An introduction to separable equivalence

Simon-Peacock

Postgraduate Group Theory Conference 24--27 June, 2014

k an algebraically closed field

k an algebraically closed field

algebra finitely generated unital algebra over k

k an algebraically closed field

algebra finitely generated unital algebra over k

module finite dimensional module

k an algebraically closed field algebra finitely generated unital algebra over kmodule finite dimensional module

 $_{A}M$ left A--module

k an algebraically closed field algebra finitely generated unital algebra over kmodule finite dimensional module $_AM$ left A--module $_BN_A$ left B right A--bimodule k an algebraically closed field **algebra** finitely generated unital algebra over k **module** finite dimensional module $_AM$ left A--module $_BN_A$ left B right A--bimodule **category** means k-category k an algebraically closed field **algebra** finitely generated unital algebra over k **module** finite dimensional module $_AM$ left A--module $_BN_A$ left B right A--bimodule **category** means k-category **functor** means k-linear functor

Some Morita theory

 \boldsymbol{A} an algebra

Some Morita theory

A an algebra $\mod A$ is the category of finite dimensional right $A\operatorname{-modules}$

Some Morita theory

A an algebra $\mod A$ is the category of finite dimensional right $A\operatorname{-modules}$

Definition (Morita equivalence)

The k-algebras A and B are called *Morita equivalent* if the module categories mod A and mod B are equivalent as k-categories.

A an algebra $\mod A$ is the category of finite dimensional right $A\operatorname{-modules}$

Definition (Morita equivalence)

The k-algebras A and B are called *Morita equivalent* if the module categories mod A and mod B are equivalent as k-categories.

$F\colon \operatorname{mod} A \longrightarrow \operatorname{mod} B$	$\operatorname{Id}_{\operatorname{mod} A}\cong GF$
$G\colon \operatorname{mod} B \longrightarrow \operatorname{mod} A$	$\operatorname{Id}_{\operatorname{mod} B} \cong FG$

A an algebra $\mod A$ is the category of finite dimensional right $A\operatorname{-modules}$

Definition (Morita equivalence)

The k-algebras A and B are called *Morita equivalent* if the module categories mod A and mod B are equivalent as k-categories.

 $F: \mod A \longrightarrow \mod B \qquad \qquad \operatorname{Id}_{\operatorname{mod} A} \cong GF$ $G: \mod B \longrightarrow \mod A \qquad \qquad \operatorname{Id}_{\operatorname{mod} B} \cong FG$

In particular $\operatorname{Hom}_A(M, N) \cong \operatorname{Hom}_B(FM, FN)$.

Example (1)

If $A \cong B$ then A and B are Morita equivalent.

Example (1)

If $A \cong B$ then A and B are Morita equivalent.

Example (2)

Any algebra A is Morita equivalent to the $n \times n$ matrix ring $\mathbb{M}_n(A)$.

The algebras A and B are Morita equivalent if and only if there are bimodules $_AM_B$ and $_BN_A$ satisfying:

The algebras A and B are Morita equivalent if and only if there are bimodules $_AM_B$ and $_BN_A$ satisfying:

• $_{A}M$, M_{B} , $_{B}N$ and N_{A} are all projective;

The algebras A and B are Morita equivalent if and only if there are bimodules $_AM_B$ and $_BN_A$ satisfying:

- $_{A}M$, M_{B} , $_{B}N$ and N_{A} are all projective;
- $M \underset{B}{\otimes} N \cong A$ as bimodules;

The algebras A and B are Morita equivalent if and only if there are bimodules ${}_{\!\!A}M_{\!\!B}$ and ${}_{\!\!B}N_{\!\!A}$ satisfying:

- $_{A}M$, M_{B} , $_{B}N$ and N_{A} are all projective;
- $M \underset{B}{\otimes} N \cong A$ as bimodules;
- $N \underset{A}{\otimes} M \cong B$ as bimodules.

The algebras A and B are Morita equivalent if and only if there are bimodules ${}_{\!\!A}M_{\!\!B}$ and ${}_{\!\!B}N_{\!\!A}$ satisfying:

- $_{A}M$, M_{B} , $_{B}N$ and N_{A} are all projective;
- $M \underset{B}{\otimes} N \cong A$ as bimodules;
- $N \underset{A}{\otimes} M \cong B$ as bimodules.

Sketch proof.

Given the modules M and N, the functors

 $-\underset{A}{\otimes} M \colon \operatorname{mod} A \to \operatorname{mod} B \qquad -\underset{B}{\otimes} N \colon \operatorname{mod} B \to \operatorname{mod} A$

provide an equivalence of the categories.

The algebras A and B are Morita equivalent if and only if there are bimodules ${}_{\!\!A}M_{\!\!B}$ and ${}_{\!\!B}N_{\!\!A}$ satisfying:

- $_{A}M$, M_{B} , $_{B}N$ and N_{A} are all projective;
- $M \underset{B}{\otimes} N \cong A$ as bimodules;
- $N \underset{A}{\otimes} M \cong B$ as bimodules.

Sketch proof.

Conversely, given an equivalence

$$F: \operatorname{mod} A \to \operatorname{mod} B \qquad \qquad G: \operatorname{mod} B \to \operatorname{mod} A$$

the modules M = FA and N = GB work.

The algebras A and B are Morita equivalent if and only if there are bimodules ${}_{\!\!A}M_{\!\!B}$ and ${}_{\!\!B}N_{\!\!A}$ satisfying:

- $_{A}M$, M_{B} , $_{B}N$ and N_{A} are all projective;
- $M \underset{B}{\otimes} N \cong A$ as bimodules;
- $N \underset{A}{\otimes} M \cong B$ as bimodules.

Sketch proof.

Conversely, given an equivalence

$$F: \operatorname{mod} A \to \operatorname{mod} B \qquad \qquad G: \operatorname{mod} B \to \operatorname{mod} A$$

the modules M = FA and N = GB work.

The algebras A and $B = \mathbb{M}_n(A)$ are Morita equivalent

The algebras A and $B = \mathbb{M}_n(A)$ are Morita equivalent

Proof(ish).

The algebras A and $B = \mathbb{M}_n(A)$ are Morita equivalent

Proof(ish).

Let

$$_AM_B = \begin{pmatrix} A & A & \cdots & A \end{pmatrix}$$

The algebras A and $B = \mathbb{M}_n(A)$ are Morita equivalent

Proof(ish).

Let

$$_{A}M_{B} = \begin{pmatrix} A & A & \cdots & A \end{pmatrix} \qquad _{B}N_{A} = \begin{pmatrix} A \\ A \\ \vdots \\ A \end{pmatrix}$$

The algebras A and $B = \mathbb{M}_n(A)$ are Morita equivalent

Proof(ish). Let ${}_{B}N_{A} = \begin{pmatrix} A \\ A \\ \vdots \\ A \end{pmatrix}$ $_AM_B = (A \quad A \quad \cdots \quad A)$ then $M \underset{B}{\otimes} N \cong A$

The algebras A and $B = \mathbb{M}_n(A)$ are Morita equivalent

The algebras A and $B = \mathbb{M}_n(A)$ are Morita equivalent

Proof(ish). Let ${}_{B}N_{A} = \begin{pmatrix} A \\ A \\ \vdots \\ A \end{pmatrix}$ $_AM_B = (A \quad A \quad \cdots \quad A)$ then $N \underset{A}{\otimes} M \cong B$ $M \bigotimes_{R} N \cong A$

M, N modules;

$$M \longrightarrow N$$

M, N modules;

$$M \longrightarrow N$$

 $\operatorname{Hom}(M,N)$ is an abelian group.

M, N modules; P a projective module

Hom(M, N) is an abelian group.

M, N modules; P a projective module

 $\operatorname{Hom}(M,N)$ is an abelian group. $\operatorname{PHom}(M,N) \leq \operatorname{Hom}(M,N)$ M, N modules; P a projective module; Y a module

 $\operatorname{Hom}(M, N)$ is an abelian group. $\operatorname{PHom}(M, N) \leq \operatorname{Hom}(M, N)$ M, N modules; P a projective module; X a module

 $\operatorname{Hom}(M, N)$ is an abelian group. $\operatorname{PHom}(M, N) \leq \operatorname{Hom}(M, N)$

Definition

For an algebra A, the stable module category, $\underline{mod} A$, has:
For an algebra A, the stable module category, $\underline{mod} A$, has:

objects the same objects as mod A

DefinitionFor an algebra A, the stable module category, mod A, has:objects the same objects as mod Amorphisms $\underline{Hom}(M, N) = {}^{Hom(M,N)}/{}_{PHom(M,N)}.$

Definition For an algebra A, the stable module category, $\underline{mod} A$, has: objects the same objects as mod Amorphisms $\underline{Hom}(M, N) = {}^{Hom(M,N)}/{}_{PHom(M,N)}$.

Definition (Stable equivalence)

The k-algebras A and B are called *stably equivalent* if the stable module categories $\underline{mod} A$ and $\underline{mod} B$ are equivalent as k-categories.

The algebras A and B are stably equivalent of Morita type if there are bimodules $_AM_B$ and $_BN_A$ such that

The algebras A and B are stably equivalent of Morita type if there are bimodules $_AM_B$ and $_BN_A$ such that

• $_{A}M$, M_{B} , $_{B}N$ and N_{A} are all projective;

The algebras A and B are stably equivalent of Morita type if there are bimodules $_AM_B$ and $_BN_A$ such that

 $\blacktriangleright_{A}M$, M_{B} , $_{B}N$ and N_{A} are all projective;

•
$$M \underset{B}{\otimes} N \cong A \oplus P$$
 for a projective A - A --bimodule P ;

The algebras A and B are stably equivalent of Morita type if there are bimodules $_AM_B$ and $_BN_A$ such that

- $_{A}M$, M_{B} , $_{B}N$ and N_{A} are all projective;
- $M \bigotimes_B N \cong A \oplus P$ for a projective A-A--bimodule P;
- $N \bigotimes_A M \cong B \oplus Q$ for a projective *B*-*B*--bimodule *Q*.

For k a field of characteristic 2, the group algebras kA_5 and kA_4 are stably equivalent of Morita type.

For k a field of characteristic 2, the group algebras kA_5 and kA_4 are stably equivalent of Morita type.

Not really a proof.

For k a field of characteristic 2, the group algebras kA_5 and kA_4 are stably equivalent of Morita type.

Not really a proof.

Let $A_4 < A_5$ be the stabiliser of 5

For k a field of characteristic 2, the group algebras kA_5 and kA_4 are stably equivalent of Morita type.

Not really a proof.

Let $A_4 < A_5$ be the stabiliser of 5 and let

 $M = {}_{A_5}kA_{5A_4}$

For k a field of characteristic 2, the group algebras kA_5 and kA_4 are stably equivalent of Morita type.

Not really a proof.

Let $A_4 < A_5$ be the stabiliser of 5 and let

$$M = {}_{A_5}kA_{5A_4} \qquad \qquad N = {}_{A_4}kA_{5A_5}$$

For k a field of characteristic 2, the group algebras kA_5 and kA_4 are stably equivalent of Morita type.

Not really a proof.

Let $A_4 < A_5$ be the stabiliser of 5 and let

$$M = {}_{A_5}kA_{5A_4} \qquad \qquad N = {}_{A_4}kA_{5A_5}$$

then

 $M \underset{kA_4}{\otimes} N \cong kA_5 \oplus (\text{proj})$

For k a field of characteristic 2, the group algebras kA_5 and kA_4 are stably equivalent of Morita type.

Not really a proof.

Let $A_4 < A_5$ be the stabiliser of 5 and let

$$M = {}_{A_5}kA_{5A_4} \qquad \qquad N = {}_{A_4}kA_{5A_5}$$

then

 $M \underset{kA_4}{\otimes} N \cong kA_5 \oplus (\operatorname{proj})$

 $N \mathop{\otimes}\limits_{kA_5} M \cong kA_4 \oplus (\operatorname{proj})$

For k a field of characteristic 2, the group algebras kA_5 and kA_4 are stably equivalent of Morita type.

Not really a proof.

Let $A_4 < A_5$ be the stabiliser of 5 and let

$$M = {}_{A_5}kA_{5A_4} \qquad \qquad N = {}_{A_4}kA_{5A_5}$$

then

 $M \underset{kA_4}{\otimes} N \cong kA_5 \oplus (\operatorname{proj})$

 $N \mathop{\otimes}\limits_{kA_5} M \cong kA_4 \oplus (\operatorname{proj})$

Definition (Morita equivalence)

The algebras A and B are Morita equivalent if if there are bimodules $_AM_B$ and $_BN_A$ satisfying:

- $_{A}M$, M_{B} , $_{B}N$ and N_{A} are all projective;
- $M \underset{B}{\otimes} N \cong A$ as bimodules;
- $N \underset{A}{\otimes} M \cong B$ as bimodules.

Definition (Morita equivalence)

The algebras A and B are Morita equivalent if if there are bimodules $_AM_B$ and $_BN_A$ satisfying:

- $_{A}M$, M_{B} , $_{B}N$ and N_{A} are all projective;
- $M \underset{B}{\otimes} N \cong A$ as bimodules;
- $N \underset{A}{\otimes} M \cong B$ as bimodules.

Definition (Stable equivalence of Morita type)

The algebras A and B are stably equivalent of Morita type if there are bimodules $_AM_B$ and $_BN_A$ such that

- $_{A}M$, M_{B} , $_{B}N$ and N_{A} are all projective;
- $M \underset{B}{\otimes} N \cong A \oplus P$ for a projective A-A--bimodule P;

•
$$N \underset{A}{\otimes} M \cong B \oplus Q$$
 for a projective *B*-*B*--bimodule *Q*

Definition (Morita equivalence)

The algebras A and B are Morita equivalent if if there are bimodules $_AM_B$ and $_BN_A$ satisfying:

- $_{A}M$, M_{B} , $_{B}N$ and N_{A} are all projective;
- $M \bigotimes_{B} N \cong A$ as bimodules;
- $N \underset{A}{\otimes} M \cong$ **B** as bimodules.

Definition (Stable equivalence of Morita type)

The algebras A and B are stably equivalent of Morita type if there are bimodules $_AM_B$ and $_BN_A$ such that

- $_{A}M$, M_{B} , $_{B}N$ and N_{A} are all projective;
- $M \bigotimes_{B} N \cong A \oplus P$ for a projective A-A--bimodule P;

•
$$N \bigotimes_A M \cong B \oplus Q$$
 for a projective *B*-*B*--bimodule *Q*

The algebras A and B are separably equivalent if there are bimodules $_AM_B$ and $_BN_A$ satisfying:

The algebras A and B are separably equivalent if there are bimodules $_AM_B$ and $_BN_A$ satisfying:

•
$$_{A}M$$
, M_{B} , $_{B}N$ and N_{A} are all projective;

The algebras A and B are separably equivalent if there are bimodules $_AM_B$ and $_BN_A$ satisfying:

- $_{A}M$, M_{B} , $_{B}N$ and N_{A} are all projective;
- $\blacktriangleright M \underset{R}{\otimes} N \cong A \oplus X \text{ for some } A \text{--bimodule } X;$
- $\blacktriangleright N \underset{A}{\otimes} M \cong B \oplus Y \text{ for some } B\text{-}B\text{--bimodule } Y.$

Definition (Separable algebra)

A is a separable algebra if A is projective as a bimodule.

Definition (Separable algebra)

A is a separable algebra if A is projective as a bimodule.

Equivalently:

• A is projective as a module for the enveloping algebra $A^{\operatorname{op}} \bigotimes_{k} A;$

Definition (Separable algebra)

A is a separable algebra if A is projective as a bimodule.

Equivalently:

- A is projective as a module for the enveloping algebra $A^{\operatorname{op}} \bigotimes_{k} A;$
- the multiplication map $A^{\operatorname{op}}\otimes A o A$ splits

Definition (Separable algebra)

A is a separable algebra if A is projective as a bimodule.

Equivalently:

- A is projective as a module for the enveloping algebra $A^{\operatorname{op}} \bigotimes_{k} A;$
- \blacktriangleright the multiplication map $A^{\operatorname{op}}\otimes A o A$ splits
- also something about a complicated idempotent

Definition (Separable algebra)

A is a separable algebra if A is projective as a bimodule.

Equivalently:

- ▶ A is projective as a module for the enveloping algebra $A^{\mathrm{op}} \otimes A$;
- \blacktriangleright the multiplication map $A^{\operatorname{op}}\otimes A o A$ splits
- also something about a complicated idempotent

Theorem

The algebra A is separably equivalent to k if and only if A is separable.

Definition (Separable algebra)

A is a separable algebra if A is projective as a bimodule.

Equivalently:

- ▶ A is projective as a module for the enveloping algebra $A^{\mathrm{op}} \otimes A$;
- the multiplication map $A^{\mathrm{op}} \otimes A o A$ splits
- also something about a complicated idempotent

Theorem

The algebra A is separably equivalent to k if and only if A is separable.

Still not a proof.

Use the modules ${}_{k}A_{A}$ and ${}_{A}A_{k}$.

Theorem

If G is a group,

Theorem

If G is a group, P a Sylow-p subgroup

Theorem

If G is a group, P a Sylow-p subgroup and p the characteristic of k

Theorem

If G is a group, P a Sylow-p subgroup and p the characteristic of k then

kG is separably equivalent to kP

Theorem

If G is a group, P a Sylow-p subgroup and p the characteristic of k then

kG is separably equivalent to kP

This one might actually constitute a proof.

Theorem

If G is a group, P a Sylow-p subgroup and p the characteristic of k then

kG is separably equivalent to kP

This one might actually constitute a proof.

Use the modules

 $_{kG}kG_{kP}$

 $_{kP}kG_{kG}$

Theorem

If G is a group, P a Sylow-p subgroup and p the characteristic of k then

kG is separably equivalent to kP

This one might actually constitute a proof.

Use the modules

$$_{kG}kG_{kP}$$

 $_{kP}kG_{kG}$

One tensor product gives

$$kG \underset{kG}{\otimes} kG \cong {}_{kP}kG_{kP}$$

Theorem

If G is a group, P a Sylow-p subgroup and p the characteristic of k then

kG is separably equivalent to kP

This one might actually constitute a proof.

Use the modules

$$_{kG}kG_{kP}$$

 $_{kP}kG_{kG}$

One tensor product gives

$$kG \underset{kG}{\otimes} kG \cong {}_{kP}kG_{kP} \cong kP \oplus (\text{something})$$

Theorem

If G is a group, P a Sylow-p subgroup and p the characteristic of k then

kG is separably equivalent to kP

This one might actually constitute a proof.

The other one gives
Theorem

If G is a group, P a Sylow-p subgroup and p the characteristic of k then

kG is separably equivalent to kP

This one might actually constitute a proof.

The other one gives

Theorem

If G is a group, P a Sylow-p subgroup and p the characteristic of k then

kG is separably equivalent to kP

This one might actually constitute a proof.

The other one gives

$$kG \underset{kP}{\otimes} kG \cong \bigoplus_{g_i} kG \otimes g_i$$

Theorem

If G is a group, P a Sylow-p subgroup and p the characteristic of k then

kG is separably equivalent to kP

This one might actually constitute a proof.

The other one gives

$$kG \underset{kP}{\otimes} kG \cong \bigoplus_{g_i} kG \otimes g_i$$

$$\bigoplus_{g_i} kG \otimes g_i \to kG$$

Theorem

If G is a group, P a Sylow-p subgroup and p the characteristic of k then

kG is separably equivalent to kP

This one might actually constitute a proof.

The other one gives

$$kG \underset{kP}{\otimes} kG \cong \bigoplus_{g_i} kG \otimes g_i$$

$$\bigoplus_{g_i} kG \otimes g_i \to kG$$

$$g \otimes g_i \mapsto gg_i$$

Theorem

If G is a group, P a Sylow-p subgroup and p the characteristic of k then

kG is separably equivalent to kP

This one might actually constitute a proof.

The other one gives

$$kG \underset{kP}{\otimes} kG \cong \bigoplus_{g_i} kG \otimes g_i$$

$$\bigoplus_{g_i} kG \otimes g_i \to kG \qquad \qquad g \mapsto gg_i^{-1} \otimes g_i$$
$$g \otimes g_i \mapsto gg_i$$

Theorem

If G is a group, P a Sylow-p subgroup and p the characteristic of k then

kG is separably equivalent to kP

This one might actually constitute a proof.

The other one gives

$$kG \underset{kP}{\otimes} kG \cong \bigoplus_{g_i} kG \otimes g_i$$

$$\bigoplus_{g_i} kG \otimes g_i \to kG \qquad \qquad g \mapsto gg_i^{-1} \otimes g_i$$
$$g \otimes g_i \mapsto gg_i$$

Theorem

If G is a group, P a Sylow-p subgroup and p the characteristic of k then

kG is separably equivalent to kP

This one might actually constitute a proof.

The other one gives

$$kG \underset{kP}{\otimes} kG \cong \bigoplus_{g_i} kG \otimes g_i$$

$$\bigoplus_{g_i} kG \otimes g_i \to kG \qquad g \mapsto gg_i^{-1} \otimes g_i g \otimes g_i \mapsto gg_i \qquad g \mapsto [G:P]^{-1} \sum_i gg_i^{-1} \otimes g_i$$

Theorem

If G is a group, P a Sylow-p subgroup and p the characteristic of k then

kG is separably equivalent to kP

This one might actually constitute a proof.

The other one gives

$$kG \underset{kP}{\otimes} kG \cong \bigoplus_{g_i} kG \otimes g_i$$

$$\bigoplus_{g_i} kG \otimes g_i \to kG \qquad g \mapsto gg_i^{-1} \otimes g_i g \otimes g_i \mapsto gg_i \qquad g \mapsto [G:P]^{-1} \sum_i gg_i^{-1} \otimes g_i$$

For k a field of characteristic 2, the group algebras kA_5 and $k[C_2 \times C_2]$ are separably equivalent.

For k a field of characteristic 2, the group algebras kA_5 and $k[C_2\times C_2]$ are separably equivalent.

Thus

• kA_5 is Morita equivalent to $\mathbb{M}_n(kA_5)$ but not isomorphic

For k a field of characteristic 2, the group algebras kA_5 and $k[C_2\times C_2]$ are separably equivalent.

Thus

- kA_5 is Morita equivalent to $\mathbb{M}_n(kA_5)$ but not isomorphic
- kA_5 is stably equivalent to kA_4 but not Morita equivalent

For k a field of characteristic 2, the group algebras kA_5 and $k[C_2\times C_2]$ are separably equivalent.

Thus

- kA_5 is Morita equivalent to $\mathbf{M}_n(kA_5)$ but not isomorphic
- kA_5 is stably equivalent to kA_4 but not Morita equivalent
- ▶ kA_5 is separably equivalent to $k[C_2 imes C_2]$ but not stably equivalent

Definition

M a module:

Definition

M a module:

$$\to P_2 \to P_1 \to P_0 \to M \to 0$$

a projective resolution

Definition

M a module:

$$\rightarrow P_2 \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0$$

a projective resolution

Assume dim $P_i \leq \lambda i^n$ for large i with n minimal

Definition

M a module:

$$\to P_2 \to P_1 \to P_0 \to M \to 0$$

a projective resolution

Assume dim $P_i \leq \lambda i^n$ for large i with n minimal then

$$\operatorname{cx} M = n - 1$$

Definition

M a module:

$$\rightarrow P_2 \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0$$

a projective resolution

Assume dim $P_i \leq \lambda i^n$ for large *i* with *n* minimal then

 $\operatorname{cx} M = n - 1$

Proposition

Separable equivalence preserves complexity.

If cx A = cx B does this mean they are separably equivalent?

If $\operatorname{cx} A = \operatorname{cx} B$ does this mean they are separably equivalent?

Short answer	
No.	

If $\operatorname{cx} A = \operatorname{cx} B$ does this mean they are separably equivalent?

Short answer	
No.	

Slightly longer answer

For G a group

If $\operatorname{cx} A = \operatorname{cx} B$ does this mean they are separably equivalent?

Short answer	
No.	

Slightly longer answer

For G a group

$$\operatorname{cx} kG = \max\left\{ r \left| \overbrace{C_p \times \cdots \times C_p}^r \leq G \right\} \right\}$$

If $\operatorname{cx} A = \operatorname{cx} B$ does this mean they are separably equivalent?

Short answer	
No.	

Slightly longer answer

For G a group

$$\operatorname{cx} kG = \max\left\{ r \left| \overbrace{C_p \times \cdots \times C_p}^r \leq G \right\} \right\}$$

So $kC_p, kC_{p^2}, kC_{p^3}, \ldots$ all have complexity 1.

New question

Is kC_{p^m} separably equivalent to kC_{p^m} for any $m \neq n$?

New question

Is kC_{p^m} separably equivalent to kC_{p^m} for any $m \neq n$?

Short answer

Maybe.

New question

Is kC_{p^m} separably equivalent to kC_{p^m} for any $m \neq n$?

Short answer

Maybe.

Slightly longer answer

$${}^{k[x]}/{}_{(x^2)}$$
 is not separably equivalent to ${}^{k[y]}/{}_{(y^n)}$ for $n
eq 2$.

$${}^{k[x]}/{}_{(x^2)}$$
 is not separably equivalent to ${}^{k[y]}/{}_{(y^n)}$ for $n
eq 2$.

lf

$${^k[x]}/{_{(x^2)}}$$
 is not separably equivalent to ${^k[y]}/{_{(y^n)}}$ for $n
eq 2$.

This is about as far from a proof as I'm going to get.

$$\Lambda_2 \stackrel{sp}{\sim} \Lambda_n$$

$$k^{[x]}/_{(x^2)}$$
 is not separably equivalent to $k^{[y]}/_{(y^n)}$ for $n
eq 2$.

This is about as far from a proof as I'm going to get.

lf

$$\Lambda_2 \stackrel{sp}{\sim} \Lambda_n$$

then

$$\operatorname{Fun}(\operatorname{\underline{mod}} \Lambda_2, \operatorname{vec}) \stackrel{sp}{\sim} \operatorname{Fun}(\operatorname{\underline{mod}} \Lambda_n, \operatorname{vec})$$

$$k^{[x]}/_{(x^2)}$$
 is not separably equivalent to $k^{[y]}/_{(y^n)}$ for $n
eq 2$.

This is about as far from a proof as I'm going to get.

$$\Lambda_2 \stackrel{sp}{\sim} \Lambda_n$$

then

lf

$$\operatorname{Fun}(\operatorname{\underline{mod}} \Lambda_2, \operatorname{vec}) \stackrel{sp}{\sim} \operatorname{Fun}(\operatorname{\underline{mod}} \Lambda_n, \operatorname{vec})$$

 $\operatorname{Fun}(\operatorname{\underline{mod}} \Lambda_2, \operatorname{vec})$:

$${^{k[x]}/_{(x^2)}}$$
 is not separably equivalent to ${^{k[y]}/_{(y^n)}}$ for $n
eq 2.$

This is about as far from a proof as I'm going to get.

$$\Lambda_2 \stackrel{sp}{\sim} \Lambda_n$$

then

lf

$$\operatorname{Fun}(\operatorname{\underline{mod}} \Lambda_2, \operatorname{vec}) \stackrel{sp}{\sim} \operatorname{Fun}(\operatorname{\underline{mod}} \Lambda_n, \operatorname{vec})$$

Fun($\underline{mod} \Lambda_2$, vec) :

$${^{k[x]}/_{(x^2)}}$$
 is not separably equivalent to ${^{k[y]}/_{(y^n)}}$ for $n
eq 2.$

This is about as far from a proof as I'm going to get.

$$\Lambda_2 \stackrel{sep}{\sim} \Lambda_n$$

then

lf

$$\operatorname{Fun}(\operatorname{\underline{mod}} \Lambda_2, \operatorname{vec}) \stackrel{sp}{\sim} \operatorname{Fun}(\operatorname{\underline{mod}} \Lambda_n, \operatorname{vec})$$

Fun($\underline{mod} \Lambda_2$, vec) :

 $\operatorname{Fun}(\operatorname{\underline{mod}} \Lambda_n, \operatorname{vec})$:

$$k^{[x]}/_{(x^2)}$$
 is not separably equivalent to $k^{[y]}/_{(y^n)}$ for $n
eq 2$.

This is about as far from a proof as I'm going to get.

 $\Lambda_2 \stackrel{sep}{\sim} \Lambda_n$

then

$$\operatorname{Fun}(\operatorname{\underline{mod}} \Lambda_2, \operatorname{vec}) \stackrel{sp}{\sim} \operatorname{Fun}(\operatorname{\underline{mod}} \Lambda_n, \operatorname{vec})$$

Fun($\underline{mod} \Lambda_2$, vec) :

Fun(
$$\underline{\text{mod}} \Lambda_n, \text{vec}$$
): 1 2 3 1 $n-1$

with some relations

