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1 Introduction and definitions
Definition (Chain complex). A chain complex (C, d) of abelian groups is a sequence

d, dy do d_y
C Co C,

such thatd; o d;,; =0 forall i.

In such a case the image of d;.; is a subgroup of kernel of d; and so we can form the quotient
H; = % called the ith homology group of the complex.

Note. The kernel of d; is often called the i-cycles of the complex and denoted Z;. The image of
d;.1 is often called the i-boundaries of the complex and denoted B,;.

Definition (Chain map). Given two chain complices (A, d) and (B, e) we can form a map
between them: f: A — B. This is a set of maps f;: A; — B; for each i such that the whole diagram
commutes; that is for each i the following square commutes.

d;
A —— Ay

o

e
B; —— B;;

Given a chain map, f: C — D there is an induced map between the homology groups of the
chain complices.

Definition (Exact). If a sequence of abelian groups X EA Y 3 Z has the property ker g = im f
then we say the sequence is exact at Y. If a sequence

X X1 X

is exact for each i then we call the sequence exact.
The 5-term exact sequence

is called a short exact sequence.



Example. o If the sequence A — B — 0 is exact at B then the map A — B is a surjection.
o If the sequence 0 -~ A — B is exact at A then the map A — B is an injection.
o If the sequence 0 -~ A - B — 0 is exact at A and B then A = B.

o If the sequence 0 > A — O is exact at A then A = 0.

Given any map f: A — B there is a unique group K that is minimal with respect to making
the sequence K — A — B exact at A, clearly this is ker f. That is, any other such group and
morphism factors uniquely through K.

Similarly there is a unique minimal group making the sequence A - B — C exact at B and
this is called the cokernel of the f.

coker f =

im f

2 Diagram chasing

Lemma 1 (3 x 3 lemma). Given a commutative diagram

0 0 0
0 A B c’ 0
0 A B C 0
0 AII B/l C// 0
0 0 0

with exact columns and exact bottom two rows, then the top row is also exact.

Proof. 'To show exact at A’, need to show that A’ LB injective.

f
/ !/
A——-7B
1 !
0 0
0—0
A B

Since all the displayed maps in the diagram above are injective this shows a = 0.

To show exact at C’, need to show that B’ > C’ is surjective.

Start with some ¢’ € C, this maps to some ¢ € C.

Now B — C is surjective so thereisa b € Bwith b~ c € C.

Let b” be the image of b in B”. Since c is in the image of C' - C, we know ¢ — 0 € C"" and
hence b” — 0 € C".



a

Leta — e € B, thene — 0 € Cand hence (b —¢) — c. Also (b —¢) — 0 € B” and hence

thereisa b’ € B such that ' — (b - e).

Now since C' — C is injective we know that b’ — ¢ and B’ - C’ is surjective.

/

’

B Ve C

oy

I

b—e c

b—e—c

A= B¢
a e b c

1 T 1
{l" 17” b” 0
A a=b B b0 c”

Exactness at B’ is equally horrendous.

3 A wayout?

Much of this section is taken from [Beri2].

Definition (Double complex). A double complex is a commutative diagram

where each e is an abelian group; the composition of a consecutive pair of horizontal arrows is

zero; and the composition of any consecutive pair of vertical arrows is zero.

That is, each row is a complex, each column is a complex and squares commute.

Example. The diagram from lemma 1 with zeros appended in all directions is an example of a

double complex.

Definition (Homology, receptor and donor). Given a portion of a complex

o —> 0 ——> @

|
b N ¢
\*

e ——> A — o

d g
|
\)A

o ——> 0 —> 0

h

Therefore b” is in the image of A” — B”, solet a” — b" and take a € A in the preimage of
"

[Ber12] Bergman, On diagram-chasing
in double complexes, Theory Appl.
Categ. 26 (2012), No. 3, 60-96



We define the familiar horizontal and vertical homology groups

ke
Ao = e the horizontal homology group
imd
ke
A¢= .erf the vertical homology group
imc¢

= ker e nker f

th /7 A
imp e receptor of
k
Ap = # the donor of A
imc+imd

Lemma 2 (Intramural maps). The identity map id: A — A induces maps

DA*)A_._

L

A$ An
Proof. For example:
= ker e nker f . kere _ kere N kere A
imp imp imdb imd

O

Lemma 3 (Extramural maps). An arrow in a double complex f: A — B induces a map Ag — "B,
and hence the names donor and receptor.

| —— o
Ag ,ADB or R
T i




Proof. 'We prove the vertical case:

¢
AL
f \‘lg
- ,ogt3

i

ker g f(kerq)  f(kerq) ker h

Ap = =
" “imc+imd  f(imc+imd) imfd im fd
kerh +keri
imfd

More globally, these maps look like

o s s
0 0 g
\ \ \
7/ /7 /7
/| /] /]
T T
o 0 °n
\ \ \
7/ /7 /7
/| /] /]
T T
o0 0 0

Notice that these maps cannot in general be composed as they appear head-to-head or tail-to-
tail.

Lemma 4 (Salamander lemma). A portion of a double complex

— 2 — 0
O <«— g «—



there is a six-term exact sequence

, DA -

S

Co — A< — Ag —> B —> B-e - = D

‘;BD,

Similarly for a section of a double complex

there is a six-term exact sequence

O
,BA L

Co =

A+—>AD—>DB—>B+ ,yDD

ABD,

As a diagram this can be displayed as

/
\ —
N

EA -
\ h L, <Y
N y \

X

_— O -Ng/,/»ﬁ}u \
A\ |

Y // /

O [ o °/

which is supposed to look like a salamander (this diagram has been gratuitously stolen from
[Ber12]).
3.1 Important corollaries

Though this lemma is a little technical there are two important corollaries that will be useful in
diagram chasing.

Corollary 1. For a horizontal arrow A — B, if the double complex is exact horizontally at both
A and B then the induced map A, — "B is an isomorphism.

Similary for a vertical arrow, and vertical exactness the induced morphism is an isomorphism.

[Ber12] Bergman, On diagram-chasing
in double complexes, Theory Appl.
Categ. 26 (2012), No. 3, 60-96



Corollary 2. Given the displayed portion of a double complex exact in the way shown, then we
have the isomorphisms to the diagram’s right.
For example the first diagram is exact horizontally at B.

Lo

00— A—> 0 —>

L l then DszA A:

Q00— B——> 0 —>

T

|
—A—{Bf— DAz Ap

l l then An=A-e

l T then Az A

AD ~A-e

l then Az

H%}—’A*’ Az As

Proof. 'We only prove one part as this gives the idea for the rest of the proof.
Take the first diagram and consider the salamander sequence for the arrow 0 — A. This
gives
QD—>0—>O—>DA—>A+—>DB,

and B = 0 by corollary 1; hence "A = A-e-.
Similarly if we consider the salamander sequence for the arrow A — B we have

0—>Ap>Ag—>"B=0---
and we have the second isomorphism. O

A simpler proof of the 3 x 3 lemma?

Proof. 'The first two diagrams of corollary 2 both apply to A’ and hence "A’ = A’ o = A’ = A’$,
and we have the diagram is horizontally exact at A".



Consider C': the second diagram in corollary 2 gives us C’ - = C’, we can then repeatedly
apply corollary 1 as shown.

0 0 0

0 DA/D DB/D DC/D 0
\

0 A4 9By —=— “Cy 0

\
0 DA//D ///' ) DB//D DC//D 0
-

0 0 0



