Diagram chasing with lizards

Simon Peacock

25th January, 2013

1 Introduction and definitions

Definition (Chain complex). A *chain complex* (C, d) *of abelian groups is a sequence*

$$\cdots \xrightarrow{d_2} C_1 \xrightarrow{d_1} C_0 \xrightarrow{d_0} C_{-1} \xrightarrow{d_{-1}} \cdots$$

such that $d_i \circ d_{i+1} = 0$ for all *i*.

In such a case the image of d_{i+1} is a subgroup of kernel of d_i and so we can form the quotient $H_i = \frac{\ker d_i}{\operatorname{im} d_{i+1}}$ called the *i*th **homology group** of the complex.

Note. The kernel of d_i is often called the *i*-cycles of the complex and denoted Z_i . The image of d_{i+1} is often called the *i*-boundaries of the complex and denoted B_i .

Definition (Chain map). Given two chain complices (A, d) and (B, e) we can form a map between them: $f: A \rightarrow B$. This is a set of maps $f_i: A_i \rightarrow B_i$ for each i such that the whole diagram commutes; that is for each i the following square commutes.

$$\begin{array}{c|c} A_i & \stackrel{d_i}{\longrightarrow} & A_{i-1} \\ f_i & & f_{i-1} \\ B_i & \stackrel{e_i}{\longrightarrow} & B_{i-1} \end{array}$$

Given a chain map, $f: C \to D$ there is an induced map between the homology groups of the chain complices.

Definition (Exact). If a sequence of abelian groups $X \xrightarrow{f} Y \xrightarrow{g} Z$ has the property ker $g = \operatorname{im} f$ then we say the sequence is **exact** at Y. If a sequence

 $X_n \longrightarrow X_{n-1} \longrightarrow \cdots \longrightarrow X_0$

is exact for each i then we call the sequence exact. The 5-term exact sequence

 $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$

is called a short exact sequence.

Example. • If the sequence $A \rightarrow B \rightarrow 0$ is exact at *B* then the map $A \rightarrow B$ is a surjection.

- If the sequence $0 \rightarrow A \rightarrow B$ is exact at *A* then the map $A \rightarrow B$ is an injection.
- If the sequence $0 \rightarrow A \rightarrow B \rightarrow 0$ is exact at *A* and *B* then $A \cong B$.
- If the sequence $0 \rightarrow A \rightarrow 0$ is exact at A then A = 0.

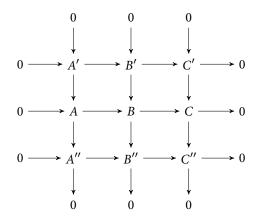
Given any map $f: A \rightarrow B$ there is a unique group *K* that is minimal with respect to making the sequence $K \rightarrow A \rightarrow B$ exact at *A*, clearly this is ker *f*. That is, any other such group and morphism factors uniquely through *K*.

Similarly there is a unique minimal group making the sequence $A \rightarrow B \rightarrow C$ exact at *B* and this is called the **cokernel** of the *f*.

$$\operatorname{coker} f = \frac{B}{\operatorname{im} f}$$

2 Diagram chasing

Lemma 1 $(3 \times 3 \text{ lemma})$. *Given a commutative diagram*



with exact columns and exact bottom two rows, then the top row is also exact.

Proof. To show exact at A', need to show that $A' \xrightarrow{f} B'$ is injective.

$$\begin{array}{c} A' \xrightarrow{f} B' \\ \left| \begin{array}{c} a \mapsto 0 \\ \downarrow \end{array} \right| \xrightarrow{a} 0 \\ \downarrow 0 \\ A \xrightarrow{0 \mapsto 0} B \end{array}$$

Since all the displayed maps in the diagram above are injective this shows a = 0.

To show exact at C', need to show that $B' \xrightarrow{g} C'$ is surjective.

Start with some $c' \in C$, this maps to some $c \in C$.

Now $B \to C$ is surjective so there is a $b \in B$ with $b \mapsto c \in C$.

Let b'' be the image of b in B''. Since c is in the image of $C' \to C$, we know $c \mapsto 0 \in C''$ and hence $b'' \mapsto 0 \in C''$.

Therefore b'' is in the image of $A'' \to B''$, so let $a'' \mapsto b''$ and take $a \in A$ in the preimage of a''.

Let $a \mapsto e \in B$, then $e \mapsto 0 \in C$ and hence $(b - e) \mapsto c$. Also $(b - e) \mapsto 0 \in B''$ and hence there is a $b' \in B$ such that $b' \mapsto (b - e)$.

Now since $C' \to C$ is injective we know that $b' \mapsto c$ and $B' \to C'$ is surjective.

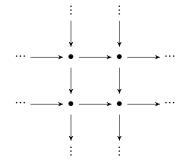
 $B' \xrightarrow{b' \mapsto c} C'$ $\downarrow \begin{array}{c} b' \xrightarrow{b' \mapsto c} c' \\ \downarrow \begin{array}{c} b' \xrightarrow{c'} \\ \downarrow \xrightarrow{b' \\ b-e} \end{array} \xrightarrow{c'} d' \\ A \xrightarrow{a \mapsto e} B \xrightarrow{b-e \mapsto c} C \\ \downarrow \begin{array}{c} a \xrightarrow{a'' \mapsto b''} \\ a'' \xrightarrow{b''} \\ b'' \xrightarrow{b'' \mapsto 0} \end{array} \xrightarrow{c'' \mapsto 0} C''$

Exactness at B' is equally horrendous.

3 A way out?

Much of this section is taken from [Ber12].

Definition (Double complex). A double complex is a commutative diagram



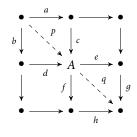
[Ber12] Bergman, *On diagram-chasing in double complexes*, Theory Appl. Categ. **26** (2012), No. 3, 60–96

where each • *is an abelian group; the composition of a consecutive pair of horizontal arrows is zero; and the composition of any consecutive pair of vertical arrows is zero.*

That is, each row is a complex, each column is a complex and squares commute.

Example. The diagram from lemma 1 with zeros appended in all directions is an example of a double complex.

Definition (Homology, receptor and donor). Given a portion of a complex



We define the familiar horizontal and vertical homology groups

$$A \leftarrow = \frac{\ker e}{\operatorname{im} d} \qquad \qquad the \text{ horizontal homology group}$$
$$A \blacklozenge = \frac{\ker f}{\operatorname{im} c} \qquad \qquad the \text{ vertical homology group}$$
$$\Box A = \frac{\ker e \cap \ker f}{\operatorname{im} p} \qquad \qquad the \text{ receptor of } A$$
$$A_{\Box} = \frac{\ker q}{\operatorname{im} c + \operatorname{im} d} \qquad \qquad the \text{ donor of } A$$

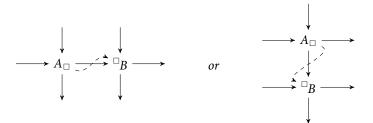
Lemma 2 (Intramural maps). *The identity map* id: $A \rightarrow A$ *induces maps*

$$\begin{array}{c} \Box_A \longrightarrow A \bullet \\ \downarrow & \downarrow \\ A \bullet \longrightarrow A_{\Box} \end{array}$$

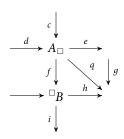
Proof. For example:

$$\Box A = \frac{\ker e \cap \ker f}{\operatorname{im} p} \longrightarrow \frac{\ker e}{\operatorname{im} p} = \frac{\ker e}{\operatorname{im} db} \longrightarrow \frac{\ker e}{\operatorname{im} d} = A \bullet$$

Lemma 3 (Extramural maps). An arrow in a double complex $f: A \to B$ induces a map $A_{\Box} \to {}^{\Box}B$, and hence the names donor and receptor.

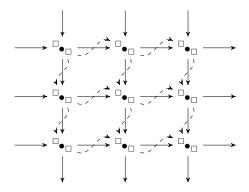


Proof. We prove the vertical case:



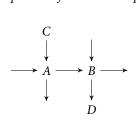
$$A_{\Box} = \frac{\ker q}{\operatorname{im} c + \operatorname{im} d} \longrightarrow \frac{f(\ker q)}{f(\operatorname{im} c + \operatorname{im} d)} = \frac{f(\ker q)}{\operatorname{im} f d} \longrightarrow \frac{\ker h}{\operatorname{im} f d}$$
$$\longrightarrow \frac{\ker h + \ker i}{\operatorname{im} f d} = {}^{\Box}B$$

More globally, these maps look like



Notice that these maps cannot in general be composed as they appear head-to-head or tail-to-tail.

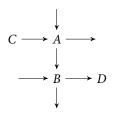
Lemma 4 (Salamander lemma). A portion of a double complex



there is a six-term exact sequence

$$C_{\Box} \xrightarrow{} A \bullet \longrightarrow A_{\Box} \longrightarrow {}^{\Box}B \longrightarrow B \bullet \xrightarrow{} B_{\Box} \xrightarrow{} D$$

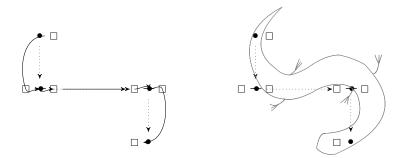
Similarly for a section of a double complex



there is a six-term exact sequence

$$C_{\Box} \xrightarrow{\cdot \cdot \cdot} A \models \longrightarrow A_{\Box} \longrightarrow B \models B \models \xrightarrow{\cdot \cdot \cdot} B_{\Box} \xrightarrow{\cdot \cdot \cdot} D$$

As a diagram this can be displayed as



which is supposed to look like a salamander (this diagram has been gratuitously stolen from [Ber12]).

[Ber12] Bergman, *On diagram-chasing in double complexes*, Theory Appl. Categ. **26** (2012), No. 3, 60–96

3.1 Important corollaries

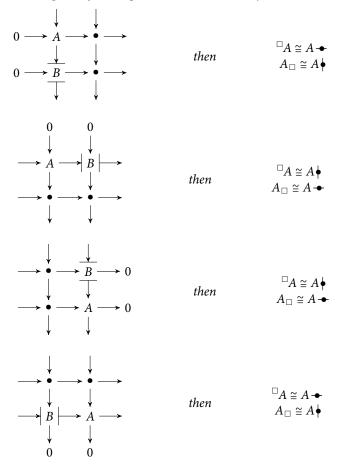
Though this lemma is a little technical there are two important corollaries that will be useful in diagram chasing.

Corollary 1. For a horizontal arrow $A \longrightarrow B$, if the double complex is exact horizontally at both *A* and *B* then the induced map $A_{\Box} \xrightarrow{\sim} {}^{\Box}B$ is an isomorphism.

Similary for a vertical arrow, and vertical exactness the induced morphism is an isomorphism.

Corollary 2. *Given the displayed portion of a double complex exact in the way shown, then we have the isomorphisms to the diagram's right.*

For example the first diagram is exact horizontally at B.



Proof. We only prove one part as this gives the idea for the rest of the proof.

Take the first diagram and consider the salam ander sequence for the arrow $0 \rightarrow A$. This gives

$$\bullet_{\Box} \to 0 \to 0 \to {}^{\Box}A \to A \bullet \to {}^{\Box}B,$$

and $\Box B = 0$ by corollary 1; hence $\Box A \cong A \bullet$.

Similarly if we consider the salam ander sequence for the arrow $A \rightarrow B$ we have

$$0 \to A \phi \to A_{\Box} \to {}^{\Box}B = 0 \to \cdots$$

and we have the second isomorphism.

A simpler proof of the 3×3 lemma?

Proof. The first two diagrams of corollary 2 both apply to A' and hence $\Box A' \cong A' \Rightarrow \cong A'_{\Box} \cong A'_{\phi}$, and we have the diagram is horizontally exact at A'.

Consider C': the second diagram in corollary 2 gives us $C' - \cong C'_{\Box}$, we can then repeatedly apply corollary 1 as shown.

