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1 Introduction and de�nitions
De�nition (Chain complex). A chain complex (C , d) of abelian groups is a sequence

⋯ C1 C0 C−1 ⋯
d2 d1 d0 d−1

such that d i ○ d i+1 = 0 for all i.

In such a case the image of d i+1 is a subgroup of kernel of d i and so we can form the quotient
H i =

ker d i
im d i+1

called the ith homology group of the complex.
Note. ¿e kernel of d i is o en called the i-cycles of the complex and denoted Z i . ¿e image of
d i+1 is o en called the i-boundaries of the complex and denoted B i .

De�nition (Chain map). Given two chain complices (A, d) and (B, e) we can form a map
between them: f ∶A→ B. ¿is is a set of maps f i ∶A i → B i for each i such that the whole diagram
commutes; that is for each i the following square commutes.

A i A i−1

B i B i−1

d i

e i

f i f i−1

Given a chain map, f ∶C → D there is an induced map between the homology groups of the
chain complices.

De�nition (Exact). If a sequence of abelian groups X
f
→ Y

д
→ Z has the property ker д = im f

then we say the sequence is exact at Y . If a sequence

Xn Xn−1 ⋯ X0

is exact for each i then we call the sequence exact.
¿e 5-term exact sequence

0 A B C 0

is called a short exact sequence.
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Example. • If the sequence A→ B → 0 is exact at B then the map A→ B is a surjection.

• If the sequence 0→ A→ B is exact at A then the map A→ B is an injection.

• If the sequence 0→ A→ B → 0 is exact at A and B then A ≅ B.

• If the sequence 0→ A→ 0 is exact at A then A = 0.
Given any map f ∶A→ B there is a unique group K that is minimal with respect to making

the sequence K → A → B exact at A, clearly this is ker f . ¿at is, any other such group and
morphism factors uniquely through K.

Similarly there is a unique minimal group making the sequence A→ B → C exact at B and
this is called the cokernel of the f .

coker f = B
im f

2 Diagram chasing
Lemma 1 (3 × 3 lemma). Given a commutative diagram

0 0 0

0 A′ B′ C′ 0

0 A B C 0

0 A′′ B′′ C′′ 0

0 0 0

with exact columns and exact bottom two rows, then the top row is also exact.

Proof. To show exact at A′, need to show that A′
f
→ B′ is injective.

A′ B′

A B

f

a↦0
0↦

0
0↦0

a↦

0

Since all the displayed maps in the diagram above are injective this shows a = 0.
To show exact at C′, need to show that B′

д
→ C′ is surjective.

Start with some c′ ∈ C, this maps to some c ∈ C.
Now B → C is surjective so there is a b ∈ B with b ↦ c ∈ C.
Let b′′ be the image of b in B′′. Since c is in the image of C′ → C, we know c ↦ 0 ∈ C′′ and

hence b′′ ↦ 0 ∈ C′′.
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¿erefore b′′ is in the image of A′′ → B′′, so let a′′ ↦ b′′ and take a ∈ A in the preimage of
a′′.

Let a ↦ e ∈ B, then e ↦ 0 ∈ C and hence (b − e) ↦ c. Also (b − e) ↦ 0 ∈ B′′ and hence
there is a b′ ∈ B such that b′ ↦ (b − e).

Now since C′ → C is injective we know that b′ ↦ c and B′ → C′ is surjective.

B′ C′

A B C

A′′ B′′ C′′

c′↦

c
b−e↦c

b↦c
e↦

b′′
b↦

b′′

c↦

0
b′′↦0a′′↦b′′

a↦

a′′

a↦e

b′↦

b−e

b′↦c

Exactness at B′ is equally horrendous.

3 A way out?
Much of this section is taken from [Ber12].

De�nition (Double complex). A double complex is a commutative diagram

⋮ ⋮

⋯ ● ● ⋯

⋯ ● ● ⋯

⋮ ⋮

where each ● is an abelian group; the composition of a consecutive pair of horizontal arrows is
zero; and the composition of any consecutive pair of vertical arrows is zero.

¿at is, each row is a complex, each column is a complex and squares commute.
Example. ¿e diagram from lemma 1 with zeros appended in all directions is an example of a
double complex.
De�nition (Homology, receptor and donor). Given a portion of a complex

● ● ●

● A ●

● ● ●

a

b

d

e

c

f

h

д

p

q
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We de�ne the familiar horizontal and vertical homology groups

A ●— =
ker e
im d

the horizontal homology group

A●∣ =
ker f
im c

the vertical homology group

�A =
ker e ∩ ker f

im p
the receptor of A

A� =
ker q

im c + im d
the donor of A

Lemma 2 (Intramural maps). ¿e identity map id∶A→ A induces maps

�A A ●—

A●∣ A�

Proof. For example:

�A =
ker e ∩ ker f

im p
Ð→

ker e
im p

=
ker e
im db

Ð→
ker e
im d

= A ●—

Lemma 3 (Extramural maps). An arrow in a double complex f ∶A→ B induces a map A� →
�B,

and hence the names donor and receptor.

A�
�B or

A�

�B
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Proof. We prove the vertical case:

A�

�B

c

d e

f

h

i

дq

A� =
ker q

im c + im d
Ð→

f (ker q)
f (im c + im d)

=
f (ker q)
im f d

Ð→
ker h
im f d

Ð→
ker h + ker i

im f d
=

�B

More globally, these maps look like

�
●�

�
●�

�
●�

�
●�

�
●�

�
●�

�
●�

�
●�

�
●�

Notice that these maps cannot in general be composed as they appear head-to-head or tail-to-
tail.

Lemma 4 (Salamander lemma). A portion of a double complex

C

A B

D
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there is a six-term exact sequence

�A
C� A ●— A�

�B B ●— �D
B�

Similarly for a section of a double complex

C A

B D

there is a six-term exact sequence

�A
C� A●∣ A�

�B B●∣ �D
B�

As a diagram this can be displayed as

● �

� �●— ●—� �

� ●

● �

� �●— ●—� �

� ●

which is supposed to look like a salamander (this diagram has been gratuitously stolen from
[Ber12]).

3.1 Important corollaries
¿ough this lemma is a little technical there are two important corollaries that will be useful in
diagram chasing.

Corollary 1. For a horizontal arrow AÐ→ B, if the double complex is exact horizontally at both
A and B then the induced map A�

∼Ð→ �B is an isomorphism.
Similary for a vertical arrow, and vertical exactness the induced morphism is an isomorphism.
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Corollary 2. Given the displayed portion of a double complex exact in the way shown, then we
have the isomorphisms to the diagram’s right.

For example the �rst diagram is exact horizontally at B.

0 A ●

0 B ●

then
�A ≅ A ●—
A� ≅ A●∣

0 0

A B

● ●

then
�A ≅ A●∣
A� ≅ A ●—

● B 0

● A 0
then

�A ≅ A●∣
A� ≅ A ●—

● ●

B A

0 0

then
�A ≅ A ●—
A� ≅ A●∣

Proof. We only prove one part as this gives the idea for the rest of the proof.
Take the �rst diagram and consider the salamander sequence for the arrow 0 → A. ¿is

gives
●� → 0→ 0→ �A→ A ●—→ �B,

and �B = 0 by corollary 1; hence �A ≅ A ●—.
Similarly if we consider the salamander sequence for the arrow A→ B we have

0→ A●∣→ A� →
�B = 0→ ⋯

and we have the second isomorphism.

A simpler proof of the 3 × 3 lemma?

Proof. ¿e�rst two diagrams of corollary 2 both apply to A′ and hence �A′ ≅ A′ ●— ≅ A′� ≅ A′●∣,
and we have the diagram is horizontally exact at A′.
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Consider C′: the second diagram in corollary 2 gives us C′ ●— ≅ C′�, we can then repeatedly
apply corollary 1 as shown.

0 0 0

0 �A′� �B′� �C′� 0

0 �A�
�B�

�C� 0

0 �A′′� �B′′� �C′′� 0

0 0 0
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