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THE JCR LECTURE SERIES

SIMON PEACOCK

Abstract. These notes were collected during an adhoc series of seminars presented by Jeremy
Rickard in 2011 and 2012 under the titleThings that might be useful to know during your PhD. The
topics covered include quivers and path algebras; simple modules, indecomposable projectives
and their correspondence; the functor category; and Auslander–ReitenTheory.

1. Notation and conventions

● k will always denote an algebraically closed field;
● Awill always denote a finite dimensional k-algebra;
● The notation RL, MS , RNS denotes that L is a left R-module, M is a right S-module and
N is a left R–right S-bimodule;

● Functors will be k-additive.
● The material can be extended to the representation theory of Artin algebras, for more
information see [ARS95].

2. Fundamentals

Definition (Quiver). A quiver Q = (V , E) is a directed graph. We define the maps s∶ E → V
and t∶ E → V to be the source and target maps. If α ∈ E is an edge from e1 ∈ V to e2 ∈ V then
s(α) = e1 and t(α) = e2.

Definition (Path). A path in a quiver Q is either sequence of edges p = α1 . . . αn with t(α i) =
s(α i+1) for each 1 ≤ i < n or a vertex e i ∈ V . The paths e i ∈ V are called trivial paths. The
definitions of s and t are extended in the obvious way for paths.

Definition (Path algebra). The path algebra for a quiver Q over a field k, denoted kQ is the k-
vector space with basis the set of all paths. For p, q ∈ kQ the multiplication in kQ is defined as
follows

pq =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 . . . αmβ1 . . . βn if p = α1 . . . αm
q = β1 . . . βn and
t(αm) = s(β1)

p if q = et(p)
q if p = es(q)
0 otherwise

Note that the identity element of kQ is 1 = ∑i∈V e i a sum of orthogonal idempotents.

Definition (Representation). A representation of a quiverQ over a field k is a pair (V , f )withV a
set of vector spaces {Vi ∣ i a vertex of Q} and f a set of k-linearmaps{ fα ∶Vi → Vj ∣ i

α→ j an edge of Q}.
A representation is finite dimensional if each Vi is finite dimensional.
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Amorphism of representations h∶ (V , f )→ (W , д) is a set of k-linear maps h i ∶Vi →Wi such
that for each i α→ j the following square commutes

Vi Wi

Vj Wj

h i

h j

fα дα

Given a kQ-module, M, we can obtain a representation of the quiver Q over k. Since 1 =
∑i e i ∈ kQ, we have that M = ⊕i Me i , a direct sum of vector spaces, one for each vertex. We
also have for each edge i α→ j ∈ Q that α = e iαe j and hence α induces a map µα ∶Me i → Me j
of multiplication by α. Also from a kQ-homomorphism, h∶M → M′ we get a morphism of
representations in the obvious way:

h i ∶Me i → M′e i
me i ↦ h(me i) = h(m)e i

and commutativity of the square is given by µ′αh(me i) = h(me i)α = h(me iα) = h(µα(me i)) =
hµα(me i).

Conversely, given a representation (Vi , fα) we can construct a module,M, for kQ. We define
M =⊕i Vi as a vector space with the action generated by

kQ Ð→ End(M)
e i ↦ ι iπ i

α1 . . . αn ↦ ιt(αn) fαn . . . fα1πs(α1)
where ι i ∶Vi → M is the natural inclusion and π i ∶M → Vi is the natural projection. Again a
morphism of representations, h i gives rise to a kQ-homomorphism, ⊕i h i of the constructed
modules. Under this correspondence we have the following proposition.

Proposition 2.1. The category mod kQ of finitely generated kQ-modules and repk Q of finite di-
mensional representations of Q over k are equivalent.

Definition (Quiver with relations). A relation on a quiver Q is a k-linear sum of paths from a
vertex i to a vertex j. That is σ = ∑n an pn ∈ kQ with an ∈ k and i = s(pn) and j = t(pn) for all
n. If ρ = {pt} is a set of relations then the pair (Q , ρ) is a quiver with relations and its associated
algebra is the quotient kQ/ ⟨ρ⟩. We will mainly consider relations for which J t ≤ ⟨ρ⟩ ≤ J2, where
J is the ideal generated by the arrows of Q. When this is the case we say ρ is a set of admissible
relations.

Proposition 2.2 (Semisimple). The following are equivalent for a finite dimensional algebra A:
● A is semisimple;
● The regular module, AA, is semisimple;
● All A-modules are semisimple.

Note. The endomorphism ring End(AA) is isomorphic to A under the mapping ϕ ↦ ϕ(1) and if
A = Sd11 ⊕ ⋅ ⋅ ⋅ ⊕ Sdnn is semisimple then

End(A) = {(
X1 0 ⋯ 0
0 X2 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0 Xn

) ∣X i a d i × d i block}

=Md1(k) × ⋅ ⋅ ⋅ ×Mdn(k)



THE JCR LECTURE SERIES 3

Definition (Radical). Let MA be a right A-module. The radical of M is given by the following
equivalent definitions.

radM =⋂{kerϕ ∣ ϕ∶M → S, S simple}

=⋂{N ∣N ≤ M, N maximal}

=∑{N ∣N ≤ M, N superfluous}

Proposition 2.3. Some facts about the radical for an algebra A and a module M:

(a) radA is an ideal of A;
(b) The quotient A

rad A is semisimple;
(c) The quotient M

radM = hdM is the maximal semisimple quotient of M (called the head of M);
(d) radM = M radA;
(e) (radA)n = rad(rad(⋯ radA)⋯) = 0 for some integer n;
( f) radA is the unique maximal nilpotent ideal.
(g) If K ≤ A is a submodule such that K is nilpotent and A

K is semisimple, then K = radA.

Consider the module J ≤ kQ generated by the arrows of Q. It is clear that J is nilpotent and
since kQ/J ≅⊕i e ik is semisimple, we have that J is the radical of kQ.

Definition (Socle). The socle, socM, of M is dual to the radical and is given by the following
equivalent definitions.

socM =∑{im ϕ ∣ ϕ∶M → S, S simple}

=∑{N ∣N ≤ M, N simple}

=⋂{N ∣N ≤ M, N essential}

Note that there is a correspondence socM = hd(M∗)∗.

For a module M and ϕ ∈ EndM, we have a chain M ≥ im ϕ ≥ im ϕ2 ≥ ⋯. If M is finite
dimensional (which is a standing assumption) then for some k, im ϕk = im ϕk+1. In particular
ϕk is idempotent andM = im ϕk ⊕ kerϕk . We have the following proposition.

Proposition 2.4. For an indecomposable module M and ϕ ∈ End(M) either ϕ is nilpotent or
ϕ is an isomorphism. As radEndA(M) is the unique maximal nilpotent ideal radEndA(M) =
{ϕ∶M → M ∣ ϕ is nilpotent}.

Recall that for bimodules RMS and RNT , we can giveHomR(M ,N) a left S–right T-bimodule
structure via (s f t)(m) = f (ms)t. Similarly for modules SMR and TNR we have a bimodule
T HomR(M ,N)S by (t f s)(m) = t f (sm). Note that for R-morphisms the R action is lost; the
action for the domain module moves side; and the action for the codomain remains on the same
side.

Two important specialisations of the above theory are that for anA-moduleMA and a k-vector
space V both Homk(M ,V) and HomA(M ,A) are left A-modules but note the difference in ac-
tion: if f ∈ Homk(M ,V) and д ∈ HomA(M ,A) then

(a f )(m) = f (ma) but

(aд)(m) = aд(m)
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Recall also that for a left A-module N and a right moduleM, the usual tensor productM⊗
A
N

is a vector space over k and the functors

(−⊗
A
N)∶modA→ mod k

Homk(N ,−)∶mod k → modA

are an adjoint pair so thatHomk(M⊗
A
N , k) ≅ HomA(M ,Homk(N , k)) ≅ HomA(M ,N∗). That

isM⊗
A
N ≅ HomA(M ,N∗)∗.

3. Projectives

Definition (Projective module). A module PA is called projective if equivalently:
● The functorHomA(P,−) is exact;
● For any surjective map ϕ∶M → N and any map f ∶ P → N there exists f ′∶ P → M such
that f = ϕ f ′;

P

M N 0

∃

● Any exact sequenceM → P → 0 splits;
● P is a direct summand of Ak

A for some k.

Definition (Projective cover). A projective cover of an A-module M is a projective A-module
P = PM of minimal dimension together with a surjection P → M → 0.

Theorem 3.1: Uniqueness of projective covers

If P πP→ M → 0 is a projective cover and Q
πQ→ M → 0 is any projective module mapping onto

M then Q = P ⊕ P′ for some P′ ≤ ker πQ . In particular projective covers are unique up to
isomorphism.

Proof. As P and Q are projective, each of the maps πP , and πQ factors through the other

P

M

Q

α β

πP

πQ

The composition βα ∈ End P and so for large k, we have that P = im (βα)k ⊕ ker (βα)k . Now
ker (βα)k ≤ ker πP(βα)k = ker πP as πPβα = πP . This shows that im (βα)k maps onto M and
since it is also projective, the minimality of P implies βα is an isomorphism.

A similar argument shows that Q = im (αβ)k ⊕ ker (αβ)k ≅ P ⊕ ker (αβ)k with ker (αβ)k ≤
πQ . □

Proposition 3.2 (Facts about projective covers).
(a) For a simple A-module, S, its projective cover PS is indecomposable.
(b) A module and its head share a projective cover: PM = PhdM .
(c) The projective cover of a direct sum is the direct sum of projective covers: PM⊕N = PM ⊕ PN .



THE JCR LECTURE SERIES 5

(d) A simple module is isomorphic to the head of its projective cover: S ≅ hd PS .

Proof.
(a) If PS = P1 ⊕ P2 then each of Pi maps onto 0 or S. The minimality of PS shows that only one

can map onto S and minimality again shows the other must be the zero module.
(b) We have the exact sequence 0 → radM → M → hdM → 0 and so the projective cover of

PhdM → hdM factors through PhdM
α→ M. As PhdM maps onto the head,M = im α + radM

and since for finite dimensional modules the radical is superfluousM = im α. Minimality of
the projective covers now shows the result.

(c) By the uniqueness of projective covers for some projective module Q we have

PM⊕N ⊕ Q = PM ⊕ PN
ϕ
→ M ⊕ N → 0

with Q ≤ kerϕ.
Let KM and KN be the kernels of the projective covers and Q′ ≤ Q an indecomposable

summand so that we have the following diagram.

0 KM ⊕ KN PM ⊕ PN M ⊕ N 0

Q′

and so we have αM ∶Q′ → KM → PM → Q′ and αN ∶Q′ → KN → PN → Q′ with α i ∈ EndQ′.
As Q′ is indecomposable α i is either nilpotent or an isomorphism, but since αM + αN = 1Q′
both cannot be nilpotent. By minimality we now have that Q′ is zero and the result follows.

(d) The head of a module is semisimple so let hd PS = S1 ⊕ ⋅ ⋅ ⋅ ⊕ Sn . Now PS→Ð→hd PS and so by
uniqueness of projective covers and part (c), PS1 ⊕⋅ ⋅ ⋅⊕PSn is a summand of PS . Now part (a)
gives the result.

□

The above proposition gives rise to a one-to-one correspondence between simple modules
and indecomposable projectives (up to isomorphism)

{ simple
modules

}
⎧⎪⎪⎨⎪⎪⎩

indecomposable
projective
modules

⎫⎪⎪⎬⎪⎪⎭

S↦PS

hd P ↦P

and a similar correspondence for injective modules:

{ simple
modules

}
⎧⎪⎪⎨⎪⎪⎩

indecomposable
injective
modules

⎫⎪⎪⎬⎪⎪⎭

S↦(PS∗ )∗

soc I ↦I

Example. Consider the following quiver with the relation αβ = γδ.
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2

1 4

3

α β

γ δ

The simple modules are

S1 =

0

k 0

0

S2 =

k

0 0

0

S3 =

0

0 0

k

S4 =

0

0 k

0

Using the fact that 1 = ∑i e i we can decompose the regular module kQ = ⊕i e ikQ and so
Pi = e ikQ = ⟨p ∣ s(p) = i⟩ is projective. Since Pi/ rad Pi = e ik is simple we see that Pi are the
indecomposable projectives.

P1 =

k

k k

k

P2 =

k

0 k

0

P3 =

0

0 k

k

P4 =

0

0 k

0

In a similar fashion I i = ⟨p ∣ t(p) = i⟩, see the discussion on page 10.
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I1 =

0

k 0

0

I2 =

k

k 0

0

I3 =

0

k 0

k

I4 =

k

k k

k

Theorem 3.3:

The number of times a simple module S occurs in a composition series of a module M is
dimk HomA(PS ,M).

Proof. We prove this by induction on the dimension ofM.
Firstly ifM is simple thenHom(PS , S) ≅ k and for a simple module T ≇ S,Hom(PT , S) = 0.
Now assume the theorem is true for modules of dimension less than dimM.
Let T ≤ M be a simple submodule, and letM′ = M/T . We have an exact sequence

0→ T → M → M′ → 0

and after applying the functorHomA(PS ,−) we obtain
0→ HomA(PS , T)→ HomA(PS ,M)→ HomA(PS ,M′)→ 0.

The number of times S occurs in a composition series of M is the number of times S occurs
in a composition series of M′ if S ≇ T and it is one greater if S ≅ T . The result now follows
immediately. □
Corollary 3.4 (Jordan-Hölder theorem). Any two composition series of a module M are equiva-
lent.

Theorem 3.5:

Let PA denote the category of finitely generated projective A-modules.

The categories modA and the functor category Fun(Pop
A ,mod k) are equivalent under the

mappings
modA ↔ Fun(Pop

A ,mod k)
M ↦ HomA(−,M)

F(A) ↦ F

Proof.↷

: HomA(A,M) ≅ M.

↷: By additivity of the functorsweneed only check for the regularmodule, butHomA(A, FA) ≅
FA. □
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Crazy Propaganda [A] (Finitely generatedmodule). Given the above theoremwe have an alterna-
tive definition: a finitely generatedA-module over a field k is a functor from the opposite category
of finitely generated projective A-modules to the category of k–vector spaces.

For an A-module M, let add M = {N ∣N is a summand ofMk for some k}, so that add A =
PA.

Let E = EndA(M) so that HomA(M ,−)∶modA → mod E is a functor from A-modules to
E-modules. It is clear that this functor takes MA ↦ EE and restricting to add M we have an
equivalence of categories add M ∼→ PE .

Let P1 , . . . , Pn be a complete list of indecomposable projective A-modules and Q = Pd11 ⊕ ⋅ ⋅ ⋅⊕
Pdnn with d i > 0 for all i. By the above argument we have an equivalence PA = add Q ≃ PEnd Q
and using theorem 3.5 we havemodA ≃ modEndQ.

Conversely, given an equivalence of module categories modA ≃ modB, then there is some
A-module XA such that XA ↔ BB and we must have that X ≅ Pd11 ⊕ ⋅ ⋅ ⋅ ⊕ Pdnn with each d i > 0.
Under this equivalence simples modules for Amap to simple modules for B and we have

HomA(XA, SA) = HomB(BB , S′B) ≅ S′ .

where the isomorphism is as vector spaces. This demonstrates that the simple module S′i associ-
ated with the projective P′i in B is d i-dimensional.

Definition (Basic algebra). An algebra is known as a basic algebra if all its simple modules are
1-dimensional.

Theorem 3.6:

Every basic algebra is the path algebra of a finite quiver with admissible relations.

Proof. Suppose E is basic so that E = End(P1⊕⋅ ⋅ ⋅⊕Pn) and let e i be the projection onto Pi . The
identity map 1 = ∑i e i , a sum of orthogonal idempotents.

For each i, j consider the spaces e i(rad E)e j
e i(rad E)2 e j and for each space choose basis elements. Let

{xα ∣ α ∈ I} be the set of all such basis elements. Since rad E = ⊕ e i(rad E)e j the set {xα} spans
rad E
rad2 E . We wish to show that ⟨e i , xα⟩ generates E as an algebra.
Wefirst show that ifT = ⟨α ∣ α∶ Pi → Pj , α not an isomorphism⟩ then the quotient ET is semisim-

ple. In this quotient any map α∶ Pi → Pj with i ≠ j is zero and so we have
E
T
= End P1
radEnd P1

⊕ ⋅ ⋅ ⋅ ⊕ End Pn
radEnd Pn

= kn = ⟨e i⟩ .

Note that this is semisimple and since T is clearly nilpotent T = rad E. Thus

(∗) ⟨e i , xα⟩ =
E

rad E
+ rad E
rad2 E

= E
rad2 E

.

Next we show that if V ≤ E is a subspace such that E′ = ⟨V⟩ and E′
rad2 E =

E
rad2 E then E = E

′.
We show by induction that E′

radk E =
E

radk E which is true by assumption for k = 2.
Assume E′/radk E = E/radk E:
Let x ∈ radk E so that x = ∑ s i t i with s i ∈ rad E and t i ∈ radk−1 E. Then there are s i ≡ s i

(mod rad2 E) and t i ≡ t i (mod radk E) with s i , t i ∈ E′. Now

x =∑ s i t i ≡∑ s i t i (mod radk+1)

with∑ s i t i ∈ E′.
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We now have by assumption that for x ∈ E there is y ∈ E′ such that x − y = s ∈ radk . And by
the previous argument we have some u ∈ E′ such that s − u = t ∈ radk+1, which gives x ≡ y + u
(mod radk+1) which concludes the induction step. Since rad is nilpotent we must have E = E′
and by (∗), E = ⟨e i , xα⟩.

Finally, for each xα there is a unique i and j such that xα = e ixα e j . We form the quiver, Q, on
n vertices with edges {xα} where i

xα→ j for this unique pair i , j.
We have

kQ →Ð→ E
e i ↦ e i
xα ↦ xα

is a surjective algebra homomorphism with kernel K, Jk ≤ K ≤ J2. □

Example. Consider the algebra

A =
⎛
⎜⎜⎜
⎝

∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗

⎞
⎟⎟⎟
⎠
=

(∗ ∗ ∗ ∗)
⊕

(0 ∗ ∗ ∗)
⊕

(0 0 ∗ ∗)
⊕

(0 0 0 ∗)

=

P1
⊕
P2
⊕
P3
⊕
P4

We have rad P1 ≅ P2, rad P2 ≅ P3, rad P3 ≅ P4 and rad P4 ≅ 0. We also have that

radA = (
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗
0 0 0 0

) and rad2 A = (
0 0 ∗ ∗
0 0 0 ∗
0 0 0 0
0 0 0 0

) .

From this we can see that we have three elements xα :

(
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

) , (
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

) , and (
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

)

and we have the quiver

1Ð→ 2Ð→ 3Ð→ 4.

We now describe an equivalence between the categories of finitely generated projectives and
injectives. Recall that the dual functor from right-modules to left-modules, D∶ (modA)op ∼→
Amod taking M ↦ M∗ = Homk(M , k), is a duality of categories. This forms a correspondence
between (right) projective A-modules and (left) injectives.

We can also contruct the A-dual functor −∨∶ (modA)op → Amod that maps M ↦ M∨ =
HomA(M ,A). This gives an equivalence between the full subcategories of finitely generated
(right) projectives and finitely generated (left) projectives.

{ f.g. projective
right modules }

op

{ f.g. projective
left modules }
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Definition (Nakayama functor). The Nakayama functor is the composition of the vector space
dual and A-dual functors and forms an equivalence between finitely Generated projective A-
modules, PA and finitely generated injective modules, IA:

PA ↔ IA
Pi ↦ I i = DP∨i = HomA(P,A)∗

We now look again at the indecomposable injective modules for a path algebra kQ. We
claimed earlier that these are themodules I i = ⟨p ∣ t(p) = i⟩. Above we have shown that I i = DP∨i
and use these to demonstrate the earlier claim true. We also describe the action of kQ on I i .

Firstly consider a module map f ∶ Pi → kQ, we have that f (e i) = f (e2i ) = f (e i)e i and so
t( f (e i)) = i. Now consider p = e i p ∈ Pi we have that f (p) = f (e i)p and so f is fully determined
by its action on e i . Let p∗, with t(p) = i denote the map [e i ↦ p] so that P∨i = ⟨p∗ ∣ t(p) = i⟩.

Also let p∗∗∶ P∨i → k be the map such that p∗∗(q∗) = { 1 p = q
0 otherwise so that the p∗∗, with

t(p) = i form a basis for I i .
We wish to describe the action of A on I i and so first describe the action on P∨i . Let a ∈ A and

p be a path with t(p) = i; (ap∗)(e i) = ap∗(e i) = ap and hence ap∗ = (ap)∗, where 0∗ is simply
the zero map. Now consider q also with t(q) = i, we have (q∗∗a)(p∗) = q∗∗(ap∗) = q∗∗((ap)∗)
and hence

q∗∗a = { p∗∗ q = ap
0 otherwise

That is, a path a ∈ kQ trims paths in I i from their source. Although in this discussion elements
of I i have been written with a double asterisk we these are clearly not needed and we have I i =
⟨p ∣ t(p) = i⟩ as claimed.

4. Symmetric algebras

Definition (Symmetric algebra). A finite dimensional algebra A, is called symmetric if the fol-
lowing equivalent properties hold:

(i) There is a linear map θ∶A→ k with θ(ab) = θ(ba) and ker θ contains no nonzero left or
right ideals;

(ii) A ≅ A∗ as A-bimodules;
(iii) ForM ∈ modA, P ∈ PA there is a vector space isomorphismHomA(M , P) ≅ HomA(P,M)∗

that is functorial in bothM and P;
(iv) For M ∈ modA there is an isomorphism of left A-modules M∗ ≅ HomA(M ,A) that is

functorial inM.

Proof.
(i) ⇒ (ii) Define f ∶A → A∗, by f (a) = [b ↦ θ(ab)], then f is a homomorphism of

bimodules and has ker f = 0. Since the modules are isomorphic as vector spaces we
have that f is an isomorphism.

(ii) ⇒ (i) If f ∶A→ A∗ is an bimodule isomorphism then θ = f (1)∶A→ k has the required
property.

(ii) ⇒ (iv) For an A-module M, HomA(M ,A) ≅ HomA(M ,Homk(A, k)) as A ≅ A∗ by
assumption and soHomA(M ,A) ≅ Homk(M⊗

A
A, k) ≅ M∗.

(iv) ⇒ (iii) For M and P as in (iii) we have HomA(M , P) ≅ HomA(M ,Homk(P∗ , k))
as P ≅ P∗∗ for finite dimensional P. Then HomA(M , P) ≅ Homk(M⊗

A
P∗ , k) and so

HomA(M , P)∗ ≅ M⊗
A
P∗ ≅ M⊗HomA(P,A) with the last isomorphism given by (iv).
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Define a map

M⊗HomA(P,A)→ HomA(P,M)
m⊗ ϕ ↦ [p ↦ mϕ(p)]

When we consider P = Awe have the following

m⊗ ϕ [p↦mϕ(p)]

m⊗ idA M⊗HomA(A,A) HomA(A,M) θ

m M M θ(1)

∼ ∼

So that m ↦ m⊗ idA ↦ [p ↦ mp] ↦ m and the top map must be an isomorphism.
Now we have HomA(M ,A)∗ ≅ M⊗

A
HomA(A,A) ≅ HomA(A,M) and functoriality of

the isomorphismM∗ ≅ HomA(M ,A) gives the result for all P.
(iii) ⇒ (ii) LetM = P = A then A ≅ HomA(A,A) ≅ HomA(A,A)∗ ≅ A∗.

□

Note that if A = kG is a group algebra for a finite group G then θ(∑д λд д) = λe satisfies
condition (i) and thus (finite) group algebras are symmetric.

Note also that since (iii) is a condition purely in terms of the modules of an algebra, if two
algebras have equivalent module categories—that is they areMorita equivalent—then one is sym-
metric if and only if the other is symmetric. If we have A ≅ A1 × A2 then A is symmetric if and
only if A1 and A2 are symmetric.

Definition (Block). Let G be a finite group so that kG = A1 ⊕ ⋅ ⋅ ⋅ ⊕ An is a direct sum of inde-
composable bimodules. The bimodules A i are unique up to permutation and are called the blocks
of kG. Additionally, kG = A1 × ⋅ ⋅ ⋅ × An as a product of algebras.

Proof. We begin with kG = A1 ⊕ ⋅ ⋅ ⋅ ⊕ An as bimodules so that 1 = ∑i e i . We have that A iA j ⊆
A i ∩ A j = {0} for i ≠ j and therefore

e i e j = {
e i if i = j
0 otherwise

This shows that each A i is an algebra; it is straightforward to check that kG ≅ A1 × ⋅ ⋅ ⋅ × An is an
algebra isomorphism.

If we let kG = M ⊕ N as bimodules thenM = Me1 ⊕ ⋅ ⋅ ⋅ ⊕Men and N = Ne1 ⊕ ⋅ ⋅ ⋅ ⊕ Nen . We
must then have A i = Me i⊕Ne i and since A i is indecomposable we can define J = {i ∣A i = Me i}
and we haveM =⊕i∈J A i , and N =⊕i∉J A i . □

Note that since group algebras are symmetric, we can see from 4 (ii) that blocks are also sym-
metric algebras.

If XkG is a kG-module then X = Xe1⊕⋅ ⋅ ⋅⊕Xen with each Xe i anA i-module; this demonstrates
that each indecomposable kG-module belongs to a block. Consider indecomposable modules X
and Y , that belong to different blocks so that X = Xe i , Y = Ye j with i ≠ j and let ϕ∶X → Y be
a module homomorphism. Then ϕ(x) = ϕ(x)e j = ϕ(xe j) = 0 for any x and so there are no
non-zero maps between modules of different blocks.
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Crazy Propaganda [B]. Let Id∶mod kG → mod kG be the identity functor so we have

Id(X) = Xe1 ⊕ ⋅ ⋅ ⋅ ⊕ Xen
= F1(X)⊕ ⋅ ⋅ ⋅ ⊕ Fn(X)

for functors {Fi} and so a block is really an indecomposable direct summand of the identity
functor.

5. Functor category

Aswe saw in theorem3.5 the categorymodA is equivalent to the functor categoryFun k(proj−Aop ,mod k)
and so we now consider some theory for the larger functor category of Fun k(modAop ,mod k) =
Fun(A).

We begin with Yoneda’s lemma, which is usually stated in terms of functors to Set , however
we are concerned with the k-additive form.

Lemma 5.1 (Yoneda). Let C be a pre-k-additive category and F∶C → mod k a k-additive functor.
For M ∈ C there is a natural isomorphism of vector spaces

{ η∶HomC(−,M)→ F
∣η a natural transformation} ≅ FM

η ↦ η
M
(idM)

Lemma 5.2 (Hom is projective). The hom functorHomA(−,M) is a projective object in Fun(A).

Proof. Let F1
α→ F2 → 0 be an exact sequence in Fun(A) and η∶HomA(−,M) → F2 a natural

transformation. Thus we have an exact sequence

x η
M
(idM)

F1M F2M 0αM

where x = ξM(idM) for some natural transformation ξ∶HomA(−,M) → F1. The composition
α ○ ξ is determined by (α ○ ξ)M(idM) = αM(x) = ηM

(idM) and so α ○ ξ = η. □

Definition (Finitely generated). A functor F ∈ Fun(A) is finitely generated if for some M ∈
modA there is an exact sequenceHomA(−,M)→ F → 0.

Definition (Finitely presented). A functor F ∈ Fun(A) is finitely presented for some N ,M ∈
modA there is an exact sequenceHomA(−,N)→ HomA(−,M)→ F → 0.

In other words: F is finitely generated and its kernel is also finitely generated.

Note that if Hom(−,N) → Hom(−,M) → F → 0 is a finite presentation then we obtain
0→ K → N → M using Yoneda and taking the kernel K. AsHom is left exact we then get

0→ Hom(−,K)→ Hom(−,N)→ Hom(−,M)→ F → 0.

This shows that a finitely presented functor has a projective resolution with three terms.

5.1. Simple functors. Let S ∈ Fun(A) be a simple functor so that there is some indecomposable
module M with SM ≠ 0. Using Yoneda we must have an exact sequence Hom(−,M) → S → 0
showing that S is finitely generated. We now consider the kernel functor K

0→ K → Hom(−,M) π→ S → 0.
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Let α∶N → M be a split epimorphism so that N = M ⊕M′. The inclusionM ↪ M ⊕M′ = N
induces

idM πM(idM)≠0

idM Hom(M ,M) SM

α Hom(N ,M) SN

πM

πN

and hence α is not in the kernel of πN .
Conversely let us define radA(N ,M) = {α ∈ HomA(N ,M) ∣ α not a split epimorphism} and

show that radA(−,M) = ker π.
To see that rad(−,M) < Hom(−,M) is indeed a subfunctor the diagram

N M

N ′

α

β

shows that if α is not split epic then α ○ β cannot be split epic. The fact that idM ∉ rad(M ,M)
shows that it is a proper subfunctor.

We have that K ≤ rad(−,M) < Hom(−,M) and so there exists a θ

θ∶ S ≅ Hom(−,M)
K

Ð→ÐÐ→Hom(−,M)
rad(−,M)

As θ ≠ 0 we know that ker θ = 0 and hence K ≅ rad(−,M).
Given the above we can write a simple functor S in the form

SM(N) = Hom(N ,M)
rad(N ,M)

withM indecomposable and we have that SM(N) = 0 unlessM is a summand of N . In particular
SM(M) = EndM

rad EndM ≅ k.

As a special case of the above consider P an indecomposable projective module so that

0→ rad(−, P)→ Hom(−, P)→ SP → 0

is exact.
If α∶X → P is a surjection then it necessarily splits. On the otherhand, if α is not a surjection

then it must map into rad P as this is the unique maximal submodule. We now have rad(−, P) =
HomA(−, rad P) and that

0→ Hom(−, rad P)→ Hom(−, P)→ SP → 0

is a projective resolution of SP .
We have shown that in general simple functors SM are finitely generated and for projective

modules SP is finitely presented. However, the following result shows all simple functors S ∈
Fun(A) are finitely presented.
Theorem 5.3: Auslander-Reiten

A simple functor SM is finitely presented.



*Note that we call τM the Auslander-
Reiten translation of M. See [ASS06,
chapter IV] for more details.

[ASS06] Assem, Simson, and
Skowroński, Elements of the representa-
tion theory of associative algebras. Vol. 1,
London Mathematical Society Student
Texts, vol. 65, Cambridge University
Press, Cambridge, 2006,
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Proof. Recall that D = Homk(−, k) is the dual functor and −∨ = HomA(−,A) is the A-dual
functor.

Let P be a projective module then

HomA(−,DP∨) = HomA(−,DHomA(P,A))
≅ Homk(−⊗

A
HomA(P,A), k)

= D(−⊗
A
HomA(P,A))

≅ DHomA(P,−)

with the last isomorphism given by m⊗ ϕ ↦ [p ↦ mϕ(p)].
For any module X we can construct the map

HomA(X ,M)⊗
k
HomA(M , X) EndM

EndM
radEndM

≅ k
α⊗ β α○β

Thinking of α ○ β as its image in k this gives rise to a natural map
HomA(X ,M)→ DHomA(M , X)

α ↦ [β ↦ α ○ β] .
Hence we have a natural transformation

ϕ∶HomA(−,M)Ð→ DHomA(M ,−).
If α ∈ rad(X ,M), then α ○ β ∈ radEndM for all β and so ker ϕ ≤ rad(−,M). Conversely if α

is a split epimorphism then taking β such that α ○ β = idM shows that kerϕ = rad(−,M).
We now have that im ϕ ≅ SM and so we can factor ϕ via

HomA(−,M)Ð→ SM Ð→ DHomA(M ,−)
Now let P1 → P0 → M → 0 be a minimal projective presentation (via projective covers) of M.

As DHom is right exact we obtain

DHomA(P1 ,−) DHomA(P0 , 0) DHomA(M ,−) 0

HomA(−,DP∨1 ) HomA(−,DP∨0 )

HomA(−,M) SM 0

ψ

where ψ exists asHomA(−,M) is projective.
Using Yoneda we can move between natural transformations Hom(−, X1) → Hom(−, X2)

and module homomorphisms X1 → X2. Thus we can construct the following diagram where Y
is the pullback and τM is the kernel of DP∨1 → DP∨0 (and hence also the kernel of the pullback)*

0 τM Y M

0 τM DP∨1 DP∨0
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Now by applying theHom, which is left exact, we can complete the diagram from above

DHomA(P1 ,−) DHomA(P0 , 0) ⋯

0 HomA(−, τM) HomA(−,DP∨1 ) HomA(−,DP∨0 )

0 HomA(−, τM) HomA(−,Y) HomA(−,M) ⋯

ψ

and have that SM is finitely presented. □

LetM be an indecomposable module, that is not projective, so that SM is finitely presented by

0 Hom(−, τM) Hom(−,Y) Hom(−,M) SM 0

AsM is not projective, by applying this sequence to Awe have

0 HomA(A, τM) HomA(A,Y) HomA(A,M) SM(A) 0

≅ ≅ ≅ ≅

0 τM Y M 0

Now consider θ ∈ rad(X ,M). By construction rad(−,M) was the image of Hom(−,Y) in
Hom(−,M) and hence there is a θ̃ lifting θ:

X

0 τM Y M 0

θ
θ̃

Notice for that the same reason if θ is a split epimorphism then no such θ̃ exists. Such a sequence
is called almost split (see the following definitions).

5.2. Almost split sequences.

Definition (Almost split). A map α∶N → M is called right almost split if the following two
conditions are satisfied

● α is not a split epimorphism;
● if θ∶X → M is not a split epimorphism then there exists θ̃∶X → N such that αθ̃ = θ.

If additionally ker α contains no (non-zero) summands ofN then α is calledminimal right almost
split. The definition of (minimal) left almost split is dual to that above.

Definition (Almost split sequence). An exact sequence 0→ K → N α→ M → 0 is called an almost
split sequence if α is minimal right almost split.

Note that by proposition 5.5 we can see the definition could easily have been in terms of mini-
mal left almost split maps.
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Theorem 5.4: Uniqueness of minimal almost split

If X α→ M is minimal right almost split and Y
β
→ M is right almost split (not necessarily

minimal), then Y ≅ X ⊕ X′ for some X′ ≤ ker β. In particular minimal right almost split
maps are unique up to isomorphism.

Proof. The proof follows a similar argument to the uniqueness of projective covers, theorem 3.1.
□

Proposition 5.5. The property of being an almost split sequence is self dual. That is if 0 → K
β
→

N α→ M → 0 is an almost split sequence then β is minimal left almost split.

Proof. Assume that α is minimal right almost split and ϕ∶K → X not a split monomorphism. If
N ′ is the pushout of K → N and K → X then we have the diagram below.

0 K N M 0

0 X N ′ M 0

β α

f д
ϕ θ

If д is a split epimorphism then f is split monic and ϕ trivially factors through θβ.
Now if д is not a split epimorphism then д is right almost split since any not split epic map to

M factors through α and hence through д. By the uniqueness of minimal right almost split maps
we have N ′ = N⊕N ′′ and N ′′ ≤ ker д. Now X = ker д = ker α⊕N ′′ = K⊕N ′′, which contradicts
the assumption. □

It is fairly straightforward to see that the last map in the sequence 0 → τM → Y → M → 0
from theorem 5.3 is minimal right almost split and so the sequence is almost split. Also by the
following lemma τM is also indecomposable.

Lemma 5.6. (a) If α∶M → N is minimal right almost split then N is indecomposable.
(b) If α∶M → N is minimal left almost split then M is indecomposable.

Proof.
(a) Assume that N = N1 ⊕ N2 with N1 ≠ 0 ≠ N2. Then the inclusion ξ i ∶N i → N is not a split

epimorphism and so there is π i ∶N i → M with απ i = ξ i . Clearly 1N = ξ1 + ξ2 = α(π1 + π2)
and α is split epic.

□
Definition (Irreducible). A map θ∶X → Y is called irreducible if it is neither split epic nor split

monic and, if the diagram
X Y

Z

θ

f д commutes then either f is split monic or д is a split

epic.

Lemma 5.7. Any irreducible map θ∶X → Y is either an epimorphism or a monomorphism.

Proof. We have
X Y

im θ

θ

and so im θ is isomorphic to either X or Y . □
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Proposition 5.8. If α∶N → M is minimal right almost split the α is irreducible.

Proof. Assume for some X we have the following diagram

N M

X

α

дf

h

Now if д is not split epic then there is an h such that αh = д. We must have h f is an isomor-
phism by minimality of α and so f is split monic. □

We have previously define rad(−,M) for indecomposable modulesM, we now generalise the
definition.

Definition (rad(X ,Y)). Let X ,Y ∈ modA. We define rad(X ,Y) ≤ HomA(X ,Y) to be the set
of maps that do not map any summand of X isomorphically to a summand of Y . That is

rad(X ,Y)
= { f ∶X → Y ∣ if α is the composition

M → X
f
→ Y → M withM indecomposable,

then α is not an isomorphism }

We define inductively radn(X ,Y) as

radn(X ,Y)
= { f ∶X → Y ∣ f = дh, with д ∈ radn−1(Z ,Y)

and h ∈ rad(X , Z) for some Z }
= { f ∶X → Y ∣ f = дh, with д ∈ radn−k(Z ,Y)

and h ∈ radk(X , Z) for some Z, 0 < k < n }

Note that for indecomposable Y this matches the earlier definition and also if α ∈ rad(X ,Y)
then SM(α) = 0 for all indecomposable modulesM.

IfM and N are indecomposable then we have

rad(N ,M) = { HomA(N ,M) M ≇ N
radEndM M ≅ N

For M, N indecomposable it is clear to see that {α∶N → M ∣ α irreducible} = rad(N ,M) ∖
rad2(N ,M).

Take again the sequence 0→ τM → Y α→ M and consider an irreducible map θ∶N → M from
an indecomposable module N toM.

0 τN Y M

N

α

θ
β

Since θ is not split epic it must factor through α and so βmust be split monic. This means that N
is a summand of Y and since (Krull-Schmidt) there are only finitely many summands we know
that there are only finitely many N for which an irreducible map exists.
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Now for indecomposablemodulesM andN , consider the space rad(N ,M)
rad2(N ,M) with basis {α1 , . . . , αn}.

Since this is a basis we clearly have ∑ α i ∉ rad2(N ,M) and hence irreducible, this immediately
gives Y = Nn ⊕ Y ′. Conversely, if Y = Nn ⊕ Y ′ and α∶Y → M is minimal right almost split
(and therefore irreducible) then α = α1 ⊕ ⋅ ⋅ ⋅ ⊕ αn ⊕ β where α i ∶N → M and β∶Y ′ → M, then
we have any non-zero linear combination of these is irreducible and hence dim ( rad(N ,M)

rad2(N ,M)) ≥ n.
This shows that the following definition is consistent.

Definition (Auslander-Reiten quiver). TheAuslander-Reiten quiver for an algebra Ahas a vertex
for each isomorphism class of an indecomposable module of A. IfM and N are indecomposable
modules then there are exactly n edges [N]→ [M] where n is equivalently given by

● n = dim ( rad(N ,M)
rad2(N ,M));

● 0→ τM → Nn ⊕ Y → M → 0 is an almost split sequence with N not a summand of Y .
● 0→ N → Mn ⊕ X → τ−1N → 0 is an almost split sequence withM not a summand of X;
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