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Abstract

Separable equivalence of algebras was introduced byMarkus Linckelmann in [Lin11b]
and may be considered as an extension to the more well-known concepts of Morita,
stable and derived equivalence. Wewill generalise the idea of separable equivalence of
algebras to additive categories and demonstrate how a separable equivalence between
algebras provides separable equivalences between several related categories.

We will prove that there are several properties of an algebra that are invariant
under separable equivalence. Specifically we show that if two algebras are separably
equivalent then they must have the same complexity. We also show that the represen-
tation type of an algebra is preserved, including the finer grain classes of domestic and
polynomial growth.

Finally, if G is a finite group with elementary abelian Sylow p-subgroup P,
then we use the separable equivalence of kG and kP to provide an upper bound
for the representation dimension of kG, where k is an algebraically closed field of
characteristic p.
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1 Introduction

In the area of representation theory we hope to gain an understanding of an algebra
through its possible actions on abelian groups. Such an abelian group (upon which
the algebra acts) is called a module for the algebra and so we may equally say that
representation theory is the study of the algebra’s module category. It follows that two
algebras are the same, from the point of view of representation theory, if their module
categories are equivalent. When this is the case the algebras are called Morita equiva-
lent, after Kiiti Morita who did much of the early work in this area (see [Mor58]). In
chapter 2 we recall some preliminary results in the representation theory of algebras.

Starting from the module category we may define other categories of importance:
the stable category and the derived category. Through equivalences of these categories
we may define the concepts of stably equivalent and derived equivalent algebras. We
may think of stable equivalence as a generalisation of derived equivalence and simi-
larly, derived equivalence as a generalisation of Morita equivalence. These ideas are
covered in greater detail in chapter 3.

The notion of separable equivalence was introduced by Markus Linckelmann in
[Lin11b] and in many ways we may consider this idea as a generalisation of the pre-
viously mentioned equivalences. The main difference between separable equivalence
and its predecessors is that separable equivalence is not defined in terms of an equiv-
alence of categories but rather from a pair of bimodules. We first introduce Linck-
elmann’s definition of separable equivalence in chapter 4 and then give a new gener-
alisation of the idea for additive categories (see definition 4.16). We go on to show
how a separable equivalence between two algebras provides us with further separable
equivalences between related categories and use these ideas to demonstrate new ways
in which we may show algebras are not separably equivalent.

The subject of chapter 5 is the representation type of an algebra, which is a mea-
sure of the complexity of the algebra’s module category. An algebra of finite-type has
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2 CHAPTER 1. INTRODUCTION

only finitely many isomorphism classes of indecomposable modules. To properly de-
scribe an algebra of wild-typewewould need families ofmodules with arbitrarily large
numbers of parameters. In between these two types we have algebras of tame repre-
sentation type, where only 1-parameter families are required. Ju. A. Drozd proved the
remarkable theorem in [Dro80] (or [Dro77] if you prefer Russian) that these three are
the only possible types. Linckelmann showed in [Lin11b] that if symmetric algebras
are separably equivalent then they have the same representation type. In chapter 5 we
generalise this result to arbitrary algebras and go on to show that separable equiva-
lence also preserves the subdivisions of tame: domestic and polynomial growth (see
theorems 5.7 and 5.18).

Theorem:

If A and B are separably equivalent algebras over an algebraically closed field k
then:

(a) A is of finite type if and only if B is of finite type;

(b) A is domestic if and only if B is domestic;

(c) A is of polynomial growth if and only if B is of polynomial growth;

(d) A is of tame representation type if and only if B is of tame representation
type;

(e) A is of wild representation type if and only if B is of wild representation
type.

Related to the representation type of an algebra is its representation dimension.
Maurice Auslander introduced the idea of representation dimension in [Aus71] to
measure how far an algebra is from being of finite representation type. In the final
chapter we give the definition of representation dimension. Focusing on elementary
abelian groups P, we define a generator M of kP and calculate an upper bound for
the global dimension of End(M). We then show that if G is any finite group with a
Sylow p-subgroup isomorphic to P then the separable equivalence between kP and
kG means that the global dimension of the endomorphism ring of M is an upper
bound for the representation dimension of kG (see theorem 6.18).
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Theorem:

If G is a group with elementary abelian Sylow p-subgroup P, and k is an alge-
braically closed field of characteristic p then

repdim kG ≤ ∣P∣.

Using the same ideas we are also able to calculate explicit bounds for the rep-
resentation dimension of group algebras of groups with small order Sylow 2- or 3-
subgroups. We rely heavily on computational methods andMagma for these calcula-
tions.





2 Basic concepts

In this chapter we present some fundamental concepts of the representation theory
of finite dimensional algebras. We will also establish some conventions and notation
that will be in use throughout the remainder of the text. A thorough understanding
of this material will be essential for the reader who wishes to gain insight from any of
the remaining chapters.

Conventions

• All rings considered are associative and unital unless specifically stated other-
wise.

• Similarly, unless we specify otherwise, all groups will be finite and written mul-
tiplicatively.

• All R-modules will be finitely generated over R unless we specify otherwise.

• The notation LR , MS , NR S denotes that L is a left R-module, M is a right S-
module and N is a left R–right S–bimodule.

• At times we will use categorical ideas: the reader should be familiar with cate-
gories, functors, natural transformations and adjunctions.

• All the categories, functors and natural transformations we consider are addi-
tive. In fact most of the time the context will involve a commutative ring R or a
field k, in which case categories will be R-additive or k-additive respectively.

2.1 Algebras

We begin with the definition of a general (associative) algebra, however most of the
time we will be assuming our algebras are finite dimensional over a field.

5



6 CHAPTER 2. BASIC CONCEPTS

Definition 2.1 (Algebra). Let R be a commutative ring (with identity). An R-algebra
is a ring A that is itself an R-module in such a way that the ring and module multipli-
cations commute:

(ab)r = a(br) = (ar)b for all a, b ∈ A and r ∈ R.

As stated above we will often be dealing with algebras over a field k, in which case we
will refer to A as a k-algebra. In this instance we can replace the term R-module in
the definition with k-vector space.

We present here three of the more commonly occurring examples of algebras:
Group Algebras, Polynomial Algebras and Path Algebras. The last of these requires
some further definitions and so there will be a brief digression before it is presented.

Group and Polynomial Algebras

Let G be a (finite) group and k a field. We define the group algebra kG, to be the free
vector space over G:

kG = {∑
д∈G

λд д ∣ λд ∈ k}.

Themultiplication is then given by linearly extending the multiplication of the group.
The unit of this algebra is 1kG = 1k1G , where 1k is the unit of the field k and 1G is the
identity in the group G; where there is no ambiguity the subscripts will be dropped.

The standard polynomial ring k[X1 , . . . , Xn] over a field k is an infinite dimen-
sional k-algebra. We may obtain a finite dimensional factor algebra from the polyno-
mial ring by taking the quotient by an ideal that contains a (positive) power of each
indeterminate. For instance the algebra k[X]⧸(Xn) is n-dimensional.

If k is a field of characteristic p we have an isomorphism between the p-
dimensional truncated polynomial algebra and the group algebra for the cyclic group
with p elements, Cp = ⟨д ∣ дp⟩.

kCp
∼Ð→ k[X]
(X p)

д ↦ X − 1

where (X p) is the ideal of k[X] generated by the monomial X p.
In fact for any abelian p-group we have an isomorphism of the group algebra to a

factor algebra of a polynomial ring. Specifically, if we haveG = Cpr1 × Cpr2 × . . . × Cprn
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for some positive integers r i and we denote by дi a generator for the i-th cyclic group
then we have an isomorphism

kG ∼Ð→ k[X1 , X2 , . . ., Xn]
(X pr1

1 , X pr2
2 , . . ., X prn

n )
дi ↦ X i − 1.

2.2 Quivers and Path Algebras

Path algebras provide a particularly convenient source of examples of algebras. These
are defined with reference to a type of directed graph known as a quiver. In addition
to the quiver itself we may place relations on the paths; in this case case we essentially
obtain a factor algebra of the full path algebra. In the next sectionwewill see that every
finite-dimensional algebra over an algebraically closed field is (Morita) equivalent to
a path algebra with relations (see theorem 2.15), demonstrating the importance of this
particular construction.

Throughout this section we will restrict ourselves to the case of path algebras over
a field but much of the material can be generalised to include all Artin algebras; for
further details see [ARS95].

Definition 2.2 (Quiver). A quiver Q = (V , E ) is a directed graph. We define the
maps s∶ E → V and t∶ E → V to be the source and target maps. If α ∈ E is an arrow
from e1 ∈ V to e2 ∈ V then s(α) = e1 and t(α) = e2.

Definition 2.3 (Path). A path in a quiverQ is either a sequence of arrows p = α1 . . . αn

with t(α i) = s(α i+1) for each 1 ≤ i < n or a vertex e i ∈ V . The paths e i ∈ V are called
trivial paths. The definitions of s and t are extended in the obvious way for paths, that
is the source of the first arrow in the path or the target of the last.

Definition 2.4 (Path algebra). The path algebra for a quiver Q over a field k, denoted
kQ, is the k-vector space with basis the set of all paths. The ring multiplication is
given by concatenation of paths, if this makes sense, and is zero otherwise. This is
then extended linearly in the obvious way. Explicitly for basis elements p = α1 . . . αm
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and q = β1 . . . βn in kQ the multiplication pq is defined as

pq =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 . . . αmβ1 . . . βn if t(αm) = s(β1)
p if q = et(p)
q if p = es(q)
0 otherwise

Note that if Q has finitely many vertices then the identity element of kQ is

1 =∑
i∈V

e i

a sum of orthogonal idempotents.

Example. Consider the quiver Q,

● α

The paths are e , α1 , α2 , . . . and we have an isomorphism

kQ ∼Ð→ k[X]
α ↦ X

We are now in a position to consider relations amongst the paths of the quiver. In
the simplest case this will amount to setting certain paths to be zero however more
complicated relations are of course permitted. In order for the relations tomake sense
we will require that all paths involved in a given relation be between the same two
vertices (and in the same direction).

Definition 2.5 (Quiver with relations). A relation on a quiver Q is a k-linear sum
of paths from a vertex a to a vertex b. That is σ = ∑n λnpn ∈ kQ with λn ∈ k
and a = s(pn) and b = t(pn) for all n. If {σi ∣ i ∈ I} is a set of relations then the
pair (Q , {σi ∣ i ∈ I}) is a quiver with relations and its associated algebra is the quotient
kQ⧸⟨σ i ∣ i∈I⟩.

If we let J be the ideal generated by the arrows of Q then we will mainly consider
relations for which J t ≤ ⟨σi ∣ i ∈ I ⟩ ≤ J2 for some positive integer t. When this is
the case we say {σi ∣ i ∈ I } is a set of admissible relations. The requirement that J t
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is contained in the ideal generated by the relations means that if Q is finite then we
obtain a finite dimensional quotient algebra. On the other side, if we did not have the
ideal contained in J2, then we could have obtained the same algebra from a simpler
quiver.

Going back to the example we had above: if we take the same quiver Q

● α

and impose the relation αn , then we obtain an algebra isomorphic to the truncated
polynomial ring k[X]⧸(Xn). As we saw earlier, if our field has characteristic p and n
is equal to a power of p, then we have an isomorphism from the path algebra of the
quiver with relations to that of the group algebra for a cyclic group of order n.

We note that a right module for the path algebra can be equivalently interpreted
as a set of vector spaces Vi , one for each vertex of the quiver, and a set of linear maps
fα , one for each arrow, where fα ∶Vs(α) → Vt(α). If we have relations on the quiver
then the linear maps are required to satisfy these relations in the natural way. When
thought of in this way a module homomorphism, say from (V , f ) to (W , д), is a
collection of linear maps h i ∶Vi →Wi such that for each arrow α, the square

Vi Wi

Vj Wj

h i

h j

fα дα

commutes.
In order to see that this is an alternative description to what we already know of

as a module for the algebra we will describe the operations required to move between
the interpretations.

If we have the representation given by Vi and fα then let V =⊕i Vi be the vector
space direct sum of the Vi on which we put the kQ action

kQ Ð→ Endk(V)
e i ↦ ι iπ i

α1α2 . . .αn ↦ ιt(αn) fαn fαn−1⋯ fα1πs(α1)

where ι i is the inclusion Vi ↪ V and π i is the projection V→Ð→Vi .
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If on the other hand we have a right kQ-module V , then we define the vector
spaces Vi = Ve i . We know that each α = e iαe j for some i and j, and therefore multi-
plication by α induces a linear map fα ∶Vi → Vj.

2.3 Some representation theory

In the study of the representation theory of an algebra A, we aim to understand the
module category of A. The full module category is denotedModA, whilst the full sub-
category of finitely generated modules is denoted modA. In particular, two algebras
can be considered equivalent, from the point of view of representation theory, if their
module categories are equivalent. This is what is referred to as Morita equivalence.
This idea gives a less granular, and often more useful, relation than is obtained from
isomorphism of the algebras themselves.

In this section we recall some fundamental results in the representation theory of
finite dimensional algebras, which for the most part will be included without proof.
For the interested reader further details can be found in [AF92] or [ARS95], or many
other sources. Note that throughout this entire section we will be assuming that alge-
bras are finite dimensional over a field.

Definition 2.6 (Radical). Let M be a right A-module. The radical of M is given by
the following equivalent definitions

radM =⋂{kerϕ ∣ ϕ∶M → S, S simple}

=⋂{N ∣N ≤ M, N maximal}

Proposition 2.7 (Properties of rad).

(a) radA is an ideal of A;

(b) the quotient A⧸rad A is semisimple;

(c) the quotient M⧸radM = hdM is the maximal semisimple quotient of M (called the
head of M);

(d) radM = M radA;
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(e) (radA)n =

n-times
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
rad(rad(⋯ radA)⋯) = 0 for some positive integer n;

( f) radA is the unique maximal nilpotent ideal of A;

(g) if M is a nilpotent ideal of A and A⧸M is semisimple then M = radA.

IfQ is a finite quiver and J < kQ is the ideal generated by all the arrows ofQ, then
it is clear to see that J is nilpotent. Further, we have that kQ⧸J ≅ ⊕i e ik, a semisimple
algebra, and so by property (g) we see that J is the radical of kQ.

Dual to the concept of the radical is the socle of a module.

Definition 2.8 (Socle). The socle, socM, of M is given by the following equivalent
definition

socM =∑{im ϕ ∣ ϕ∶ S → M, S simple}

=∑{N ∣N ≤ M, N simple}

Projective modules

Theprojectivemodules for an algebra generalise the idea of freemodules. In fact, since
freeness of a module is not a categorical idea, if we only care about the representation
theory of an algebra up toMorita equivalence, then projectivemodules aremuchmore
natural to work with.

Definition 2.9 (Projective module). A (right) A-module P is called projective if equiv-
alently:

• the functorHomA(P,—) is exact;

• for any surjective module map ϕ∶M → N and any module map f ∶ P → N there
exists f ′∶ P → M such that f = ϕ f ′;

P

M N 0

∃ f ′
f

ϕ
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• any exact sequenceM → P → 0 splits;

• P is a module direct summand of An for some n.

To eachmoduleM, we can assign a projectivemodule PM , its projective cover. This
is the smallest projective module withM as a factor module.

Definition 2.10 (Projective cover). The projective cover of an A-moduleM, is a projec-
tive A-module P = PM of minimal dimension together with a surjection P → M → 0.

Note we may refer to the projective cover as a consequence of the following theo-
rem.

Theorem 2.11: Uniqueness of projective covers

If P πP→ M → 0 is a projective cover and Q
πQ→ M → 0 is any projective module

mapping onto M then Q ≅ P ⊕ P′ for some P′ ≤ ker πQ . In particular projective
covers are unique up to isomorphism.

This theorem is a consequence of Schanuel’s lemma, see for example section 5 of
[Lam99].

Proposition 2.12 (Properties of projective covers).

(a) If S is a simple A-module then its projective cover is indecomposable.

(b) A module and its head share a projective cover: PM = PhdM .

(c) The projective cover of a direct sum is the direct sum of projective covers: PM⊕N =
PM ⊕ PN .

(d) A simple module is isomorphic to the head of its projective cover: S ≅ hd PS .

The above proposition gives rise to a one-to-one correspondence between simple
modules and indecomposable projectives (up to isomorphism)

{
simple
modules

}
⎧⎪⎪⎪⎨⎪⎪⎪⎩

indecomposable
projective
modules

⎫⎪⎪⎪⎬⎪⎪⎪⎭

S↦PS

hd P ↦P
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Example. Consider the algebra for the quiver Q,

2

1 4 αβ = γδ

3

α β

γ δ

The simple modules are

S1 =

0

k 0

0

S2 =

k

0 0

0

S3 =

0

0 0

k

S4 =

0

0 k

0

Using the fact that 1 = ∑i e i we can decompose the regularmodule kQ =⊕i e ikQ
and so Pi = e ikQ = ⟨p ∣ s(p) = i⟩ is projective. Since Pi⧸rad Pi = e ik is simple we see
that Pi are the indecomposable projectives.

P1 =

k

k k

k

P2 =

k

0 k

0

P3 =

0

0 k

k

P4 =

0

0 k

0
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The importance of projective modules can be seen in the following theorem,
which shows how to obtain the category modA from the category of finite dimen-
sional projectives.

IfA and B are categories then we denote by Fun(A,B) the functor category. This
has as objects the functors fromA toB. Themorphisms from a functor F to a functor
G are the natural transformations, the class of which we denote by Nat(F ,G)

Theorem 2.13:

Let projA denote the category of finitely generated projective A-modules.

The categoriesmodAand the functor categoryFun ((projA)op ,mod k) are equiv-
alent under the mappings

modA ∼←→ Fun ((projA)op ,mod k)
M ↦ HomA(—,M)

F(A) ↦ F

For an A-moduleM, let

addM = {N ∣N is a summand ofMn for some positive integer n}

so that addA = projA.
Let E = End(MA) so that

HomA(M ,—)∶modA→ mod E

is a functor from A-modules to E-modules. This functor takesMA ↦ EE and restrict-
ing to addM we have an equivalence of categories

addM ∼Ð→ proj E .

Let P1 , . . . , Pn be a complete list of indecomposable projective A-modules and

T = Pd1
1 ⊕ ⋅ ⋅ ⋅ ⊕ Pdn

n

with d i > 0 for all i. By the above argument we have an equivalence projA = addT ≃
proj EndT and using theorem 2.13 we have

modA ≃ modEndT .
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Conversely, given an equivalence of module categories modA ≃ modB, then
there is some A-module XA such that

XA ←→ BB

and we must have that

X ≅ Pd1
1 ⊕ ⋅ ⋅ ⋅ ⊕ Pdn

n

with each d i > 0. Under this equivalence, simple modules for Amap to simple mod-
ules for B and we have

HomA(X , S) = HomB(B, S′) ≅ S′

where the isomorphism is as vector spaces. If we know that every simple module
S has EndA(S) ≅ k (as would be the case if k were algebraically closed) then this
demonstrates that the simple module S′i associated with the projective P′i in B is d i-
dimensional.

This idea of a projective module that is the direct sum of at least one copy of each
indecomposable projective is as close to the concept of a free module as one can get
using categorical methods. From the above discussion we see that these lead to equiv-
alent module categories. In fact wemay obtain the simplest Morita equivalent algebra
to some algebra A, by taking the endomorphism ring of the direct sum of one copy
of each indecomposable projective. In this situation we have an algebra where each
simple module is 1-dimensional.

Definition 2.14 (Basic algebra). An algebra is known as a basic algebra if all its simple
modules are 1-dimensional.

Linking back to section 2.2 on quivers and path algebras we have:

Theorem 2.15:

Every finite dimensional basic algebra is isomorphic to a path algebra of a fi-
nite quiver with admissible relations. Moreover the quiver for such an algebra
is unique, although the relations need not be.
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2.4 Symmetric and separable algebras

We continue this introductory chapter with symmetric algebras and separability.
These will lead to the simplest examples of separable equivalence, the main topic of
this text. In order to talk about symmetric algebras we first need the idea of a dual of a
module. In our context there are two different notions of a dual and these are defined
in terms ofHom-sets in a similar way to that of a vector space dual.

Dual of a module

Let XA , YB A and ZB , be respectively a right A-module, a left B–right A–bimodule
and a left B-module for the R-algebras A and B. We can put a natural left B-module
structure on the group HomA(X ,Y) and a natural left A-module structure on the
groupHomB(Y , Z) as follows. In the first case if ϕ∶X → Y and b ∈ B, then we define
(bϕ)(x) = b(ϕ(x)). In the second example if we let θ∶Y → Z and a ∈ A, then we
define (aθ)(y) = θ(ya).

If A is an R-algebra andM a right A-module then we can use these ideas to define
two different duals forM, each of which is a left A-module. Firstly

M∗ = HomR(M , R)

(aϕ)(m) = ϕ(ma)

where we are considering MR A as a left R–right A–bimodule, and secondly

M∨ = HomA(M ,A)

(aθ)(m) = a(θ(m))

where we are considering A as the regular A-A–bimodule.

Definition 2.16 (Symmetric algebra). A finite dimensional algebra A over a field k, is
called symmetric if the following equivalent properties hold:

(a) There is a linear map θ∶A → k with θ(ab) = θ(ba) and ker θ contains no
non-zero left or right ideals;

(b) A ≅ A∗ as A-bimodules;

(c) there is an automorphism ofmodA that mapsM∗ toM∨;
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(d) forM ∈ modA, P ∈ projA there is a vector space isomorphismHomA(M , P) ≅
HomA(P,M)∗ that is functorial in bothM and P.

Remarks. Wemake some remarks regarding this definition.

• The linear map in (a) is known as a symmetrizing form for the algebra A.

• If ŝ∶A ∼→ A∗ is the isomorphism given in (b), then s = ŝ(1) is a symmetrizing
form. Moreover, the image of a ∈ A under the same isomorphism is the map
sa ∶A→ k, defined by sa(b) = s(ab); thus s determines ŝ.

• The automorphism group of A as an A-A–bimodule is canonically isomorphic
to the group of units of the centre of A.

Aut(A) ∼Ð→ Z(A)×

ϕ ↦ ϕ(1)

Any other symmetrizing form of A is given by sz for some z ∈ Z(A)×.

• Property (c) shows that for symmetric algebras the two duals we defined above
coincide.

• Notice that (d) is a condition purely in terms of themodules of an algebra, there-
fore if two algebras are Morita equivalent then one is symmetric if and only if
the other is symmetric.

Example. We give two examples of symmetric algebras.

• The trace is a symmetrizing form forMatn(k), the algebra of square matrices
with entries from k.

• For a finite group G, the group algebra kG is symmetric with symmetrizing
form∑ λд д ↦ λ1.

Definition 2.17 (Separable algebra). An R-algebra A is called separable if it satisfies
the follow equivalent properties

(a) A is projective as an A-A–bimodule;

(b) The multiplication morphism

µ∶A⊗
R
A Ð→ A

a⊗ a′ ↦ aa′

splits as a morphism of A-A–bimodules.
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(c) There is an element

e =∑
i
e i ⊗ e′i ∈ A⊗A

such that

µ(e) =∑
i
e i e′i = 1

and ae = ea for all a ∈ A: that is∑ ae i ⊗ e′i = ∑ e i ⊗ e′ia.

Notice that if A is a separable algebra and M is an A-module then the functor
HomA(M ,—) is a summand of the functor

HomA(M⊗
A
A⊗

k
A,—) ≅ Homk(M⊗

A
A,HomA(A,—))

≅ Homk(M ,—)

which is exact and hence A is semisimple.

Example. Thecanonical example of a separable algebra is thematrix algebra,Matn(R);
we show this using property (c) of the definition.

Let e i j be the matrix with one in the (i, j)-th position and zeros elsewhere, and let
e = ∑n

i=1 e i1⊗ e1i , so that∑i e i1e1i = ∑i e i i = 1.
Now

ek l e =∑
i
ek l e i1⊗ e1i = ek1⊗ e1 l =∑

i
e i1⊗ e1i ek l = eek l

and sinceMatn(R) is generated by the ek l we have that ae = ea for any a ∈Matn(R).

2.5 Auslander–Reiten quiver

The Auslander–Reiten quiver for an algebra contains information regarding the inde-
composable modules for the algebra along with the homomorphisms between these
modules. In this way, one can think of the Auslander–Reiten quiver as represent-
ing the whole module category. In order to understand the definition of this quiver
we must first understand almost split sequences, which are sometimes referred to as
Auslander–Reiten sequences.

Definition 2.18 (Almost split). A map of A-modules α∶N → M is called right almost
split if the following two conditions are satisfied

• α is not a split epimorphism;
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• if θ∶X → M is not a split epimorphism then there exists θ̃∶X → N such that
αθ̃ = θ.

X

N M

θ
∃θ̃

α

If additionally ker α contains no (non-zero) summands of N then α is calledminimal
right almost split. The dual concept of (minimal) left almost split is defined analo-
gously.

Definition 2.19 (Almost split sequence). An exact sequence

0Ð→ K Ð→ N αÐ→ M Ð→ 0

is called an almost split sequence if α is minimal right almost split.

Theorem 2.20: Uniqueness of minimal almost split

If X α→ M is minimal right almost split and Y
β
→ M is right almost split (not nec-

essarily minimal), then Y ≅ X ⊕ X′ for some X′ ≤ ker β. In particular minimal
right almost split maps are unique up to isomorphism.

Note the similarity between this and theorem 2.11 on the uniqueness of projective
covers. We have a dual result for the uniqueness of left minimal almost split maps.

Proposition 2.21. The property of being an almost split sequence is self dual and so if

0Ð→ K
β
Ð→ N αÐ→ M Ð→ 0

is an almost split sequence then β is minimal left almost split.

Note that this proposition means that definition 2.19 could have been phrased in
terms of left minimal almost split maps.

Lemma 2.22.

(a) If α∶M → N is minimal right almost split then N is indecomposable.

(b) If α∶M → N is minimal left almost split thenM is indecomposable.
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For the following theorem we need to define the transpose of a moduleM. Let

P1 Ð→ P0 Ð→ M Ð→ 0

be the start of a minimal projective resolution. We take the A-dual of this sequence
and call the cokernel the transpose ofM which we denote by TrM:

M∨ Ð→ P∨0 Ð→ P∨1 Ð→ TrM

Theorem 2.23:

If k is an algebraically closed field and A is a k-algebra then for any non-projective
indecomposable A-module M, there exist a module X and an almost split se-
quence

0Ð→ τM Ð→ X Ð→ M Ð→ 0

where
τM = (TrM)∗ = Homk(TrM , k).

The existence of almost split sequences is necessary for the construction of the
Auslander–Reiten quiver (and the associated Auslander algebra).

Definition 2.24 (Irreducible). A map θ∶X → Y is called irreducible if it is neither a
split epimorphism nor a split monomorphism and, if the diagram

X Y

Z

θ

f д

commutes then either f is a split monomorphism or д is a split epimorphism.

Lemma 2.25. Any irreducible map θ∶X → Y is either an epimorphism or a monomor-
phism.

Proposition 2.26. If α∶N → M is minimal right almost split then α is irreducible.

Definition 2.27 (Radical). Let X ,Y ∈ modA. We define rad(X ,Y) ≤ HomA(X ,Y) to
be the set of maps that do not map any summand of X isomorphically to a summand
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of Y . That is

rad(X ,Y) = { f ∶X → Y ∣ ifM is indecomposable andM → X and Y → M

are any maps then the compositionM → X
f
→ Y → M is

not an isomorphism }

We define inductively radn(X ,Y) as

radn(X ,Y) = { f ∶X → Y ∣ f = дh, with д ∈ radn−1(Z ,Y)
and h ∈ rad(X , Z) for some Z }

= { f ∶X → Y ∣ f = дh, with д ∈ radn−k(Z ,Y)
and h ∈ radk(X , Z) for some Z, 0 < k < n }

IfM and N are indecomposable then we have

rad(N ,M) =
⎧⎪⎪⎨⎪⎪⎩

HomA(N ,M) M ≇ N
radEndM M ≅ N

ForM, N indecomposable it is clear to see that

{α∶N → M ∣ α irreducible} = rad(N ,M) ∖ rad2(N ,M).

Take again the sequence 0 → τM → Y α→ M and consider an irreducible map
θ∶N → M from an indecomposable module N toM.

0 τN Y M

N

α

θ
β

Since θ is not a split epimorphism it must factor through α and so β must be a split
monomorphism. This means that N is a summand of Y and since (Krull-Schmidt)
there are only finitely many summands we know that there are only finitely many N
for which an irreducible map toM exists.

Now for indecomposable modulesM and N , consider the space

rad(N ,M)
rad2(N ,M)
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with basis {α1 , . . . , αn}. Since this is a basis we have ∑i α i ∉ rad2(N ,M) so ∑i α i

is irreducible and thus Y = Nn ⊕ Y ′. Conversely, if Y = Nn ⊕ Y ′ and α∶Y → M is
minimal right almost split then there are α i ∶N → M and β∶Y ′ → M such that

α = α1 ⊕ α2 ⊕ ⋅ ⋅ ⋅ ⊕ αn ⊕ β.

Any non-zero linear combination of the α i is irreducible and thus

dim( rad(N ,M)
rad2(N ,M)

) ≥ n.

This shows that the following definition is consistent.

Definition 2.28 (Auslander–Reiten quiver). Let A be an algebra over an algebraically
closed field k. The Auslander–Reiten quiver for A has a vertex for each isomorphism
class of indecomposable A-modules. If M and N are indecomposable modules then
there are exactly n edges [N]→ [M] where n is equivalently given by

• n = dim ( rad(N ,M)
rad2(N ,M));

• Nn ⊕ Y → M is a minimal right almost split map and N is not a summand of
Y .

• N → Mn ⊕ X is a minimal left almost split map andM is not a summand of X.

The irreducible maps may satisfy relations that we can add to the Auslander–
Reiten quiver and in this way we may form a new algebra from an existing one. If an
algebra A has finitely many indecomposable modules, so that its Auslander–Reiten
quiver is finite, then we may construct the path algebra B from the AR-quiver in the
usual way. In this context B is known as the Auslander algebra of A. Modules for
B are simply representations of the module category for A and we have a categorical
equivalence

Fun(modA,mod k) ≅ modB

Example. Consider the path algebra for

● ●

This has indecomposable modules

k 0 k k 0 k

S1 P1 S2 = P2
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We can examine the possible homomorphisms between these modules to calculate
the radical spaces. For example if we have a map ϕ∶ S1 → P1

k 0

k k

then as the square must commute wemust have that ϕ is the zero homomorphism. In
this way we can see that the only non-zero maps that exist are P1 → S1 and S2 → P1:

k k 0 k

k 0 k k

1 1

or scalar multiples of these.
The composition of these two maps is zero and so the Auslander–Reiten quiver is

[S2] [P1] [S1]
α β

αβ = 0.





3 Equivalence of algebras

We aim to introduce the concept of separable equivalence, which is an equivalence
relation on algebras. This idea can be considered a generalisation of some more well-
known equivalences. The mostly widely known equivalence relation on algebras is
surely isomorphism, which is incredibly restrictive. In fact many consider two alge-
bras to be literally the same if they are isomorphic—the author included.

In this chapter we will explore the idea of Morita equivalence (which has been
mentioned in the preceding chapter) and introduce the idea of stable equivalence and
derived equivalence. These concepts will naturally lead on to the idea of separable
equivalence, which we define for the first time in the next chapter.

3.1 Morita equivalence

We begin withMorita equivalence which we have already seen in earlier sections; two
algebras are Morita equivalent if they have equivalent module categories. The discus-
sion preceding definition 2.14 demonstrates that we may have non-isomorphic alge-
bras that are Morita equivalent. The theorem we give here provides an alternative
characterisation of this equivalence, which we will then extend to the other types of
equivalence.

Theorem 3.1:

The R-algebras A and B are Morita equivalent if and only if there are bimodules
PA B and QB A such that

(a) the modules PA , PB , QB and QA are projective; and

(b) there are bimodule isomorphisms

PA ⊗
B
QA

∼Ð→ AA A QB ⊗
A
PB ∼Ð→ BB B

25
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We will only prove that if the modules P and Q exist then the algebras are Morita
equivalent. For all the gory details see theorem 22.2 of [AF92].

Proof. [⇐] We claim that the functors

F =—⊗
A
P∶modAÐ→ modB G =—⊗

B
Q∶modB Ð→ modA

provide inverse equivalences for the module categories. The composition GF is given
by

GF =—⊗
A
P⊗

B
Q .

The isomorphism P⊗
B
Q ∼→ A then gives us

GF ≅—⊗
A
A ≅ Idmod A

and an identical argument works for the composition FG.

The proof of the other direction for this theorem involves taking a pair of inverse
equivalences F and G, and setting PB = F(AA). The left action of A on itself provides
an action of A on F(AA) and this gives a left action of A on P. Similarly, we take
Q = G(B) and carry over the natural left action of B to Q. The remainder of the proof
involves demonstrating that P and Q are projective in the manner specified and that
F =—⊗

A
P and G =—⊗

B
Q.

3.2 Stable equivalence

From the point of view of representation theory the simplest class of algebras to un-
derstand are the semisimple algebras. These algebras have the property that every
module is a direct sum of simple modules and so once the simple modules are under-
stood so is the entire module category. Another characterisation of being semisimple
is that all modules are projective, thus to gain insight into non-semisimple algebras
it makes sense to study the non-projective modules. The setting for this is called the
stable module category.

We will define the stable module category as a particular quotient of the full mod-
ule category in such a way that all projective modules are (isomorphic to) zero. For
modules X and Y , let PHom(X ,Y) denote the subset of Hom(X ,Y) that consists of
all homomorphisms that factor through a projectivemodule. That is f ∈ PHom(X ,Y)
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if and only if there is a projective module P and morphisms д ∈ Hom(X , P) and
h ∈ Hom(P,Y) such that the diagram

X Y

P

f

д h

commutes. We refer to PHom as the projective homomorphisms. The fact that
PHom(X ,Y) is actually a subgroup of Hom(X ,Y) should be clear as if f factors
through P and д factors through Q then f + д factors through P ⊕ Q. It is equally
clear that if we have f ∈ PHom(X ,Y) and д ∈ Hom(Y , Z) then д f ∈ PHom(X , Z),
and similarly for composition on the other side.

Definition 3.2 (Stable module category). The stable module category of an algebra A,
denotedModA, is given by the data:

Objects the same objects asModA;

Morphisms for modules X and Y ,Hom(X ,Y) = Hom(X ,Y)
PHom(X ,Y)

That this description satisfies the requirements for being a category is a conse-
quence of the discussion above. In the stable module category all projective modules
are zero objects, in particular all semisimple algebras have equivalent (and zero) stable
module categories. The stable module category leads to a natural equivalence relation
on algebras called stable equivalence: we say that two algebras are stably equivalent
if their respective module categories are equivalent. In a similar way to the module
category, we will denote bymodA the full subcategory ofModA consisting of finitely
generated modules.

Example. Let k be a field of characteristic 2. The group algebras for the alternating
groups kA4 and kA5 are stably equivalent. This can be shown as a consequence of a
special case of the Green correspondence for trivial intersection groups.

The Sylow 2-subgroups inside A5 are isomorphic to the Klein-4 group. If we let
K4 < A5 be the Klein-4 that fixes 5 then it is clear to see that K4 has the trivial intersec-
tion property, that is if д ∈ A5 then K4 ∩ дK4д−1 is either K4 or {1}. The normaliser
of K4 is the alternating group A4 that fixes 5.

With this set-up the Green correspondence for trivial intersection groups (see
[Alp86, theorem 10.1]) tells us that induction and restriction between A4 and A5 are
inverse operations of one another up to addition of a projective module.
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For the stable module category we would like a characterisation similar to that
of theorem 3.1 where we instead think of the isomorphisms as stable isomorphisms.
Unfortunately such a result is not true and the best we can do is the following theorem.

Theorem 3.3: Stable equivalence of Morita type

Let A and B be R-algebras. If there are bimodules PA B and QB A such that

(a) PA , PB , QB and QA are projective; and

(b) there are projective bimodules XA A and YB B and bimodule isomorphisms

PA ⊗
B
QA

∼→ AA A ⊕ XA A QB ⊗
A
PB ∼→ BB B ⊕ YB B

then we say A and B have a stable equivalence ofMorita type and in particular they
are stably equivalent.

Proof. Mutatis mutandis the proof is the same as that of theorem 3.1.

Notice that the operations used in the example above to show that kA4 and kA5

are stably equivalent over a field of characteristic 2 were that of induction and restric-
tion. Induction from kA4 to kA5 is the same as the tensor product with the bimodule

kA5kA4 kA5
and similarly restriction is the same as the tensor product with kA5kA5 kA4

.
In this way we see that this is also an example of a Morita-type stable equivalence.

We consider an example where two algebras are stably equivalent but this equiva-
lence is not of Morita-type. Let A be the k-algebra for the quiver

● ●
α

β
αβ = βα = 0

and B be the k-algebra for the quiver

● ●γ δ γ2 = δ2 = 0.
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The simple modules S i , and the indecomposable projective modules Pi , for A are

S1∶ k 0 S2∶ 0 k

P1∶ k k
1

0

P2∶ k k
0

1

whereas for B the simple modules Ti , and the indecomposable projective modules Q i ,
are

T1∶ k 00 T2∶ 0 k 0

Q1∶ k2 0( 0 1
0 0 ) Q2∶ 0 k2 ( 0 1

0 0 )

and these are the only indecomposable modules.
Clearly in both cases when we factor out the projective modules we are simply left

with modules for the algebra k × k and so in particular the stable module categories
coincide. If we had a stable equivalence of Morita type then in particular we would
have exact functors of the module category

F∶modAÐ→ modB G∶modB Ð→ modA

satisfying
FG(M) = M ⊕ (projective)

and similarly for GF. If

G(T1) = Sm1 ⊕ Sn2 ⊕ (projective)

then the exact sequences

0→ S2 → P1 → S1 → 0 0→ S1 → P2 → S2 → 0

0→ T1 → Q1 → T1 → 0
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tell us that

0 Sn2 ⊕ Sm1 ⊕ (proj) Pn
1 ⊕ Pm

2 ⊕ (proj) Sn1 ⊕ Sm2 ⊕ (proj) 0

G(T1) G(Q1) G(T1)

≅ ≅ ≅

is exact and so m = n. Since FG(T1) = T1 ⊕ (proj) then either F(S1) or F(S2) is
projective: in either case this contradicts GF(S i) = S i ⊕ (proj).

Though this example demonstrates that the converse to theorem 3.3 is not true, the
example is a little contrived and all stable equivalences we shall consider henceforth
will be of Morita type.

3.3 Derived equivalence

The final equivalence we wish to mention before introducing separable equivalence
is derived equivalence. We will skip over most of the details as they are not directly
relevant to what is to follow however this section would feel incomplete without at
least touching on the subject. For a good reference on derived categories see [Kra07].

In a similar approach to stable equivalence we first define a new type of category
derived from the module category and then say that two algebras are derived equiva-
lent if their derived categories are equivalent.

We begin with the category of complexes: in this category objects are cochain
complexes of modules

. . . Xn−1 Xn Xn+1 . . .dn−1 dn

such that the maps dn ○ dn−1 = 0 for all integers n. A morphism between complexes
is given by a collection of module morphisms ϕn ∶Xn → Y n

. . . Xn−1 Xn Xn+1 . . .

. . . Y n−1 Y n Y n+1 . . .

dn−1
X dn

X

dn−1
Y dn

Y

ϕn−1 ϕn ϕn+1

such that the squares commute: dn
Y ○ ϕn = ϕn+1 ○ dn

X .
From the category of complexes we next define the homotopy category. As we

factored out the projective homomorphisms in the stable category, here we factor out
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those morphisms that are null-homotopic. Recall that a chain map ϕ is called null-
homotopic if there are maps ρn ∶Xn → Y n−1 such that ϕ can be expressed as the sum
ϕn = dn−1

Y ○ ρn + ρn+1 ○ dn
X for all integers n.

. . . Xn−1 Xn Xn+1 . . .

. . . Y n−1 Y n Y n+1 . . .

dn−1
X dn

X

dn−1
Y dn

Y

ϕnρn ρn+1

Finally we obtain the derived category by formally inverting quasi-isomorphisms.
Recall that a morphism of complexes induces amorphism on the cohomology groups.
We say that a morphism is a quasi-isomorphism if these induced maps are isomor-
phisms of the cohomology groups.

That the above procedure does indeed describe a category is beyond the scope of
this document, as are many of the properties of the derived category. We simple state
that the derived category has the structure of a triangulated category and that two
algebras are considered derived equivalent if their derived categories are equivalent as
triangulated categories. For the relevant details see [Kra07].

The important result for derived equivalence that connects to the theorems of the
previous section is the following theorem of Rickard. Note that the original statement
of the result is more general than the version stated here.

Theorem 3.4: [Ric91, corollary 5.5]

If A and B are derived equivalent symmetric algebras over a field k then A and B
have a Morita-type stable equivalence.
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4 Separable equivalence

The preceding chapter introduced several notions of the equivalence of algebras. In
each case the existence of a particular pair of bimodules was enough to demonstrate
that the algebras were equivalent and it is this idea that we will use to define separable
equivalence. This idea was first proposed by Linckelmann in [Lin11b].

Definition 4.1 (Separable equivalence). Let A and B be R-algebras. We say that A and
B are separably equivalent if there are bimodules MA B and NB A such that

(a) the modules MA ,MB , NB and NA are finitely generated and projective; and

(b) there are bimodules XA A and YB B and bimodule isomorphisms

MA ⊗
B
NA

∼Ð→ AA A ⊕ XA A NB ⊗
A
MB

∼Ð→ BB B ⊕ YB B

Separable equivalence is a generalisation ofMorita, derived and stable equivalence
of Morita-type. This is easily seen as a direct result of theorems 3.1, 3.3 and 3.4.

The terminology separable equivalence comes from the following proposition that
was stated by Linckelmann in [Lin11b].

Proposition 4.2. A finite dimensional algebra A over a field k is separable (in the sense
of definition 2.17) if and only if it is separably equivalent to k.

Proof. Firstly, assume that A is a separable algebra so that A is a summand of A⊗
k
A,

as A-A-bimodules. Taking M = AA k and N = Ak A, so that M⊗k
N = A⊗

k
A, we have

the required isomorphisms.
Now assume that A is separably equivalent to k through bimodules MA k and Nk A .

Consider the functorHomA−A(M⊗
k
N ,—):

HomA−A (M⊗
k
N ,—) ≅ HomA (M ,HomA(N ,—))

= HomA(M ,—) ○HomA(N ,—)
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SinceM is projective as a leftA–module we have thatHomA(M ,—) is exact. Similarly
the functor HomA(N ,—) is exact and hence so is the composition. We therefore
have that M⊗

k
N is projective as an A-A–bimodule and so A is projective as an A-A–

bimodule.

For a general algebra A over a ring R we would not have that R is a summand of
A and so the above proof does not go through. If we had this additional assumption
however, (for example if Awere free as an R-module) we could follow the same proof.

It will be convenient to talk about situations in which only one of the isomor-
phisms in the definition of separable equivalence exists. In this situation we will use
the language of Bergh and Erdmann (see [BE11, 2506f.]) and say that one algebra sep-
arably divides the other.

Definition 4.3 (Separably divides). Given two R-algebras A and B, we say that A sep-
arably divides B if there exists bimodules MA B and NB A , finitely generated projective
on both sides, such that A is a bimodule direct summand ofM⊗

B
N .

Proposition 4.4. Let A and B be R-algebras. A and B are separably equivalent if and
only if A separably divides B and B separably divides A.

Proof. One direction is clear, for the other let A separably divide B via (W , X) and B
separably divide A via (Y , Z). Let M =W ⊕ Z and N = X ⊕ Y then the pair (M ,N)
provide a separable equivalence for A and B.

The next proposition, which was stated by Linckelmann in [Lin11b], will give us
our first example of algebras that are separably equivalent but are not equivalent in
any of the more specialised ways we have seen in the preceding chapters.

Proposition 4.5. Let G be a finite group, k a field of characteristic p > 0. If P is a Sylow
p-subgroup of G then kP is separably equivalent to kG.

Proof. Consider the bimodules kGkP kG and kGkG kP .
Let {x1 , x2 , . . ., xm} be a set of left coset representatives for P in G. There is an

isomorphism of right kP-modules

kPm
kP Ð→ kGkP

(p1 , p2 , . . ., pm) ↦
m
∑
i=1

x i p i
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showing that kGkP is projective and similarly for the left module. This isomorphism
also demonstrates that as kP-kP–bimodules that kP is a summand of

kG ⊗
kG

kGkP kP ≅ kGkP kP .

Now consider the reverse tensor product,

kG ⊗
kP

kGkG kG .

Define the map

ϕ∶ kG Ð→ kG ⊗
kP

kGkG kG

д ↦ ∑
x∈G⧸P

дx⊗ x−1

which is a module homomorphism since

дh ↦ ∑
x∈G⧸P

дhx⊗ x−1

= ∑
x∈G⧸P

д(hx)⊗(hx)−1h

= ∑
y∈G⧸P

дy⊗ y−1h.

If we compose ϕ with the homomorphism

kG ⊗
kP

kGkG kG Ð→ kG

д⊗ h ↦ дh

we have

д ↦ ∑
x∈G⧸P

д = ∣G ∶ P∣д

and since P is a Sylow p-subgroup the index ∣G ∶ P∣ is invertible and kG is a summand
of kG ⊗

kP
kGkG kG .

For the reader that is familiar with block algebras and defect groups it is important
to note that the equivalent statement in this context is also true. If B is a block algebra
and D its associated defect group then each module for B is a module for the whole
group algebra and so we can restrict from B to kD. On the other hand if we have
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a module for kD then we can induce to kG and there is a unique summand of the
induced module that “belongs” to B. These two functors

B kD
restriction

induction and projection

can be written as a tensor product with certain bimodules and it is these bimodules
that give the separable equivalence between B and kD.

In the example on page 27 we showed that over a field of characteristic 2, the alge-
bras kA4 and kA5 were stably equivalent (and therefore separably equivalent). Notice
that proposition 4.5 now tells us that in addition these algebras are separably equiva-
lent to kK4.

We now present some new results relating to separable equivalence.

Proposition 4.6. Let A, B and C be algebras over a field k. If A separably divides B
then A⊗

k
C separably divides B⊗

k
C.

Proof. Let MA B and NB A be a pair of bimodules with the property that

MA ⊗
B
NA ≅ AA A ⊕ XA A .

The tensor productM⊗
k
C is an (A⊗

k
C)-(B⊗

k
C)–bimodule with the actions

(a⊗ c1)(m⊗ c2)(b⊗ c3) = amb⊗ c1c2c3

and we can similarly define a (B⊗
k
C)-(A⊗

k
C) action on N ⊗

k
C.

Thus we have that

(M⊗
k
C) ⊗

B⊗ C
(N ⊗

k
C) ≅ (M⊗

B
N)⊗

k
C

≅ (A⊕ X)⊗
k
C

≅ (A⊗
k
C)⊕ (X⊗

k
C)

Now if MA is projective then MA is a summand of An for some n. Therefore
M⊗

k
C is a summand of

An ⊗
k
C ≅ (A⊗

k
C)n

and hence is projective.
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In the proof of proposition 4.5 the bimodules that we used to form the separable
equivalence were duals of one another. In particular in this situation we have that
tensoring withM is both left and right adjoint to tensoring with N . This leads us to a
new definition which we call symmetrical separable equivalence.

Definition 4.7 (Symmetrical separable equivalence). Let A and B be finite dimen-
sional algebras. We say that A and B are symmetrically separably equivalent if there
is a separable equivalence (M ,N) such that —⊗M is both left and right adjoint to
—⊗N .

Proposition 4.8. If A and B are symmetric algebras then A and B are separably equiv-
alent if and only if A and B are symmetrically separably equivalent.

Proof. Let (M ,N) be a separable equivalence for A and B. Consider the modules
M⊕N∗ andN⊕M∗. It is clear that these twomodules satisfy the summand properties
of separable equivalence. We wish to show that the tensor functors are adjoints of one
another so let X be an A-module and Y be a B-module.

First note that since

HomB(B,Y) ≅ Y ⊗
B
HomB(B, B)

andM is projective (and therefore a direct sum of summands of B) we also have

HomB(M ,Y) ≅ Y ⊗
B
HomB(M , B)

(cf. [AF92, prop 20.10]). Thus we have

HomB(X⊗
A
M ,Y) ≅ HomA(X ,HomB(M ,Y)) via the tensor-Hom adjunction

≅ HomA(X ,Y ⊗
B
Hom(M , B)) by the argument above

≅ HomA(X ,Y ⊗
B
M∗) due to symmetry of B

Similarly we have

HomA(Y ⊗
B
M∗ , X) ≅ HomB(Y ,HomA(M∗ , X))

≅ HomB(Y , X⊗
A
M∗∗)

≅ HomB(Y , X⊗
A
M) (cf. [AF92, prop 20.17])

That M∗ is projective as a left and right module follows simply from the adjunction.
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4.1 Complexity

There are certain properties of algebras that are preserved through separable equiva-
lence. One such property is the complexity of an algebra. Here we introduce what is
meant by the complexity of a module and of an algebra and go on to prove that it is
unchanged by separable equivalence. This result seems to be well-known but we don’t
know of any complete statement or proof in print.

Definition 4.9 (Complexity). Let Abe an algebra over a field k, letM be an A-module
and

⋯Ð→ P1 Ð→ P0 Ð→ M Ð→ 0

a projective resolution ofM, which we will denote by P∗.
If there exists an integer d, such that for some λ ∈ N we have dim(Pn) ≤ λnd−1

for all n ∈ N then we say that P∗ has finite complexity and we call the smallest such d
the complexity of the resolution, which we denote by cx P∗.

The complexity of the moduleM is equal to the complexity of a minimal projective
resolution ofM.

The complexity of an algebra is the maximal complexity for a module of that alge-
bra.

In order to show that the definition of complexity of a module makes sense we
have the following lemma. This shows that an equivalent definition would be the
minimum complexity for any projective resolution ofM.

Lemma 4.10. If we have a minimal projective resolution

⋯Ð→ P1
d1ÐÐ→ P0

d0ÐÐ→ M Ð→ 0

and any projective resolution

⋯Ð→ Q1
e1ÐÐ→ Q0

e0ÐÐ→ M Ð→ 0

then cx(P∗) ≤ cx(Q∗).

Proof. Since P∗ is a minimal projective resolution, theorem 2.11 tells us that

Q i ≅ Pi ⊕ Q′i

for some projectives Q′i in such a way that ker(e i) = ker(d i)⊕Q′i and e i Pi = d i . Thus
dim(Pi) ≤ dim(Q i) for all i and cx(P∗) ≤ cx(Q∗).
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We require two further lemmas before we can prove themain result of this section:
that separable equivalence preserves complexity.

Lemma 4.11. Let A and B be finite dimensional algebras over a field k and MA B a
bimodule that is finitely generated projective as a both an A-module and as a B-module.
If we have a projective resolution of A-modules

⋯Ð→ P1 Ð→ P0 Ð→ X Ð→ 0

then cx(X⊗
A
M) ≤ cx(X) ≤ cx(P∗).

Proof. SinceM is projective as a A-module the functor

—⊗
A
M∶modAÐ→ modB

is exact and since M is projective as a B-module each Pi ⊗
A
M is projective. We there-

fore have that P∗⊗
A
M is a projective resolution of X⊗

A
M.

It is clear that dim(Pi ⊗
A
M) ≤ dim(Pi ⊗

k
M) and since M and B are both finitely

generated dim(Pi ⊗
k
M) = dim(Pi)dim(M) <∞.

Finally if dim(Pi) ≤ f (i) for some polynomial f then dim(Pi ⊗
A
M) ≤

dim(M) f (i) and hence cx(P∗⊗
A
M) ≤ cx(P∗).

Lemma 4.12. If A separably divides B via the modules ( MA B , NB A) and XA is an A-
module then cx(X⊗

A
M) = cx(X).

Proof. It suffices to show that cx(X) ≤ cx(X⊗
A
M⊗

B
N) as together with lemma 4.11

this gives

cx(X⊗
A
M⊗

B
N) ≤ cx(X⊗

A
M) ≤ cx(X) ≤ cx(X⊗

A
M⊗

B
N)

and we will have equality throughout. Since X⊗
A
M⊗

B
N ≅ X ⊕ X′ for some X′ we

have that aminimal projective resolution of X⊗
A
M⊗

B
N is simply the direct sum of the

minimal projective resolutions of X and X′ and thus the given inequality is immediate.

The next theorem is a direct consequence of the previous three lemmas.
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Theorem 4.13:

If A separably divides B then cx(A) ≤ cx(B).

If A and B are separably equivalent then cx(A) = cx(B).

Let G be a finite group and k a field of characteristic p. If V andW are modules
for the group algebra kG we may form the tensor product V ⊗W where the action

(v⊗w)д = vд⊗wд.

Note that this differs from the tensor product over an algebra we have hitherto used.
With this diagonal action we have the property that if P is a projective module and
V is any module then P⊗V is projective (see for instance [Alp86, lemma 7.4]). If we
take a minimal projective resolution of the trivial module k

⋯Ð→ P1 Ð→ P0 Ð→ k Ð→ 0

then we can form a projective resolution of a module V via

⋯Ð→ P1⊗V Ð→ P0⊗V Ð→ k⊗V Ð→ 0≅

V

This demonstrates that the complexity of a module for a group algebra is always
bounded above by the complexity of the trivial module.

The following theorem of Alperin and Evens tells us that the complexity of a mod-
ule for a group algebra can be calculated on elementary p-subgroups.

Theorem 4.14: [AE81]

LetG be a finite group and k a field of prime characteristic p. IfV is a kG-module
then

cxkG(V) = max
E
( cxE(V↓E))

where E runs through all elementary abelian subgroups of G and V↓
E
denotes the

restriction of V to the subgroup E.

Let k be a field of characteristic p and Cpn be the cyclic group of order pn . Theo-
rem 4.14 tells us that the complexity of kCpn is the same as the complexity of kCp. If
we use the isomorphism kCp ≅ k[x]

(x p) then

⋯ xÐÐ→ k[x]
(x p)

x p−1

ÐÐÐ→ k[x]
(x p)

xÐÐ→ k[x]
(x p)

Ð→ k Ð→ 0
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is a minimal projective resolution of the trivial module and hence the complexity of
this module is 1. As a straightforward consequence of the horseshoe lemma we can
see that the complexity of any module is the maximum complexity amongst its com-
position factors and thus we have shown that the complexity of any cyclic group is
also 1.

As we have seen that separable equivalence preserves complexity, the discussion
above leads us naturally to ask if any algebras for cyclic p-groups are separably equiv-
alent. A partial answer to this question will be presented in section 5.6.

4.2 Categorical formulation

The notion of separable equivalence we have used thus far was presented in terms
of bimodules for two algebras but note that we could have just as easily defined this
equivalence in terms of functors between the module categories. We make this clear
with the following theorem.

Theorem 4.15: Separable equivalence

The algebras A and B are separably equivalent if and only if there are exact func-
tors F and G

modA modB

F

G

such that

(a) if P is a projective A-module then FP is a projective B-module;

(b) if Q is a projective B-module then GQ is a projective A-module;

(c) for some functor S∶modA→ modA there is an equivalence of functors

GF ∼Ð→ Idmod A⊕S

(d) for some functor T ∶modB → modB there is an equivalence of functors

FG ∼Ð→ Idmod B ⊕T
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Proof. Let A and B be separably equivalent via the modules MA B and NB A and let

F =—⊗
A
M G =—⊗

B
N .

The composition GF is given by

GF =—⊗
A
M⊗

B
N ≅ (—⊗

A
A)⊕ (—⊗

A
X)

≅ Idmod A⊕(—⊗
A
X)

for some A-A–bimodule X and similarly for the composition FG.

That F is exact is a direct consequence of MA being projective. Finally if PA is a
projective A-module then

HomB(FP,—) = HomB(P⊗
A
M ,—) ≅ HomA (P,HomB(M ,—))

≅ HomA(P,—) ○HomB(M ,—).

As both PA andMB are projective the composition is exact and hence FP is projective.
Again we may make corresponding arguments for the functor G.

For the opposite implication assume that we have the functors F and G described
in the theorem andMB = FA and NA = GB.

We can carry the natural left action of A on itself over to the module M. If λa is
the endomorphism of AA representing left multiplication by a then F(λa) gives an
endomorphism ofMB . Thus we can define the action of A onM via

A Ð→ End(MB)
a ↦ F(λa)

In this way we obtain bimodules MA B and NB A and since F and G are right exact the
Eilenberg–Watts theorem ([Eil60]) tells us that

F ≅—⊗
A
M G ≅—⊗

B
N .

We need now only show that M is left and right projective. Right projectivity is
immediate from the definition of F and from the fact that A is right projective. For left
projectivity let f ∶X → FA be any surjective A-homomorphism. We need to demon-
strate that f has a right inverse.
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Since A is a summand of GFA and A is projective we have a map д making the
following diagram commute

GX A⊕ A′ 0

≅

GFA

A

G f

∃д

with the bottom row exact. After applying F to this we get

X ⊕ X′ FA⊕ FA′ 0

≅

FGX

FA

FG f≅( f 0
0 f ′ )

F д≅( h
h′ )

and hence h is the required section for f .

We may take theorem 4.15 as a more generalised definition of separable equiva-
lence. The advantage of the categorical definition is that we no longer need to refer
to module categories and can talk about separable equivalence of general exact cat-
egories. In a similar way we may generalise the definition of symmetric separable
equivalence and in this case wemay even drop the requirement that the categories are
exact.

Definition 4.16 (Separable equivalence). LetA andB be exact categories. We say that
these categories are separably equivalent if there exists exact functors

A B
F

G

such that

(a) if P is a projective object ofA then FP is a projective object of B;

(b) if Q is a projective object of B then GQ is a projective object ofA;
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(c) the identity functor onA is a summand of GF;

(d) the identity functor on B is a summand of FG.

Definition 4.17 (Symmetrical separable equivalence). Let A and B be additive cate-
gories. We say that these categories are symmetrically separably equivalent if there are
functors

A B
F

G

such that

(a) (F ,G) is an adjoint pair;

(b) (G , F) is an adjoint pair;

(c) the identity functor onA is a summand of GF;

(d) the identity functor on B is a summand of FG.

Remark. IfA and B are module categories then the adjointness implies that the func-
tors are exact and that projective modules are sent to projective modules.

We wish to demonstrate that given a separable equivalence between algebras this
generates further separable equivalences between other more general categories. We
will restrict in what follows to the case of symmetrical separable equivalence and thus
we begin with some properties of adjointness.

Lemma 4.18. LetA, B and C be k-categories. Given functors L and R

A B
L

R

we can define in a natural way the functors

Fun(B, C) Fun(A, C)

−○L

−○R

Fun(C ,A) Fun(C ,B)

L○−

R○−

If (L, R) is an adjoint pair then (—R,—L) and (L—, R—) are adjoint pairs.
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Proof. We prove that (—R,—L) is an adjunction which should be sufficient to
demonstrate the argument for the other pair.

Let ε∶ 1⇒ RL and η∶ LR⇒ 1 be the unit and counit of the adjunction.
For each X∶A→ C and Y ∶B → C define the natural transformations

Nat(XR,Y)
ΦX ,YÐÐÐ→ Nat(X ,YL)

ξ ↦ ξL ○ Xε

and
Nat(X ,YL)

ΨX ,YÐÐÐ→ Nat(XR,Y)
ν ↦ Yη ○ νR

We show that Φ and Ψ are inverses of one another:

ΨX ,YΦX ,Y(ξ) = Yη ○ΦX ,Y(ξ)R ΦX ,YΨX ,Y(ν) = ΨX ,Y(ν)L ○ Xε

= Yη ○ ξLR ○ XεR = YηL ○ νRL ○ Xε

= ξ ○ XRη ○ XεR = YηL ○ YLε ○ ν

= ξ = ν

The diagrams

XR XRLR YLR

XR Y

XεR ξLR

Id
XRη Yη

ξ

X YL

XRL YLRL YL

ν

Xε YLε
Id

νRL YηL

should make this clear.

Lemma 4.19. More generally, letA, B, C andD be k-categories. Given functors

A B
L

R

C D
F

G

we can define the functors

Fun(A, C) Fun(B,D)

F−R

G−L

If (L, R) and (F ,G) are both adjoint pairs then so is (F − R,G − L).
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Proof. The proof is similar to that of lemma 4.18. The mappings are given by

Nat(FXR,Y)
ΦX ,YÐÐÐ→ Nat(X ,GYL)

ξ ↦ GξL ○ ε
FG
Xε

LR

and
Nat(X ,GYL)

ΨX ,YÐÐÐ→ Nat(FXR,Y)
ν ↦ η

FG
Yη

LR
○ FνR

where ε and η are the units and counits of the adjunctions with superscripts indicating
the adjunction in question.

One direction of the proof that these are inverse mappings is demonstrated in the
following commutative diagram.

FXR Y

FXR

FGFXR FGY

FGFXR

FGFXRLR FGYLR

ξ

FGξ

FGξLR

FGFXRη
LR

η
FG

FXR

FGYη
LR

η
FG

Y

Id

Fε
FG

XR

Fε
FG

XR

Id

FGFXε
LR

R

The general definition of separable equivalence together with the lemmas above
give us the following theorem that provides separable equivalences between functor
categories from those of algebras, the proof of which is a direct consequence.

Proposition 4.20. Let A and B be a pair of symmetrically separably equivalent k-
algebras. Let C and D be a second pair of symmetrically separably equivalent k-algebras
and let E be a small k-category. We have the following symmetrical separable equiva-
lences of functor categories:
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(a) Fun(modA,modC) ∼ Fun(modB,modD),

(b) Fun(modA, E) ∼ Fun(modB, E),

(c) Fun(E ,modA) ∼ Fun(E ,modB).

If we consider the restriction of the functors that make up a separable equivalence
we may find that some subcategories are also equivalent. For instance if we have a
symmetrical separable equivalence (F ,G) between two categoriesA and B, such that
(F ,G) restrict to functors between full subcategories A′ and B′ then in fact we have
a symmetrical separable equivalence of these subcategories. This follows simply from
the fact that the identity functor on the subcategory is the restriction of that of the
parent category and additionally that, for full subcategories, the Hom-sets are equal
to those of the parent category. This together with a dual result gives us:

Proposition 4.21. Let A and B be symmetrically separably equivalent categories via
(F ,G). If we have full subcategories A′ < A and B′ < B such that FA′ ⊆ B′ and
GB′ ⊆ A′ then we have the following symmetrical separable equivalences:

(a) A′ ∼ B′;

(b) A⧸A′ ∼ B⧸B′;

(c) Fun (A⧸A′,mod k) ∼ Fun (B⧸B′,mod k).

Proof. The proof of (a) is clear from the discussion above and (b) from a dual argu-
ment. For (c) we need only note that

Fun (A⧸A′,mod k)

is a full subcategory of Fun(A,mod k) via the embedding that composes a functor
with the obvious projection

AÐ→ A⧸A′

and that the equivalence given by proposition 4.20 restricts to functors of these sub-
categories.

Example. If A and B are separably equivalent symmetric algebras then the subcate-
gories of projective modules, projA and projB, are symmetrically separably equiva-
lent and the category of representations of their stable categories Fun(modA,mod k)
and Fun(modB,mod k) are symmetrically separably equivalent.





[Dro80] Drozd, Tame and wild
matrix problems, Representation
theory, II (Proc. Second Inter-
nat. Conf., Carleton Univ., Ot-
tawa, Ont., 1979), Lecture Notes
inMath., vol. 832, Springer, Berlin,
1980, pp. 242–258

[CB88] Crawley-Boevey,On tame
algebras and bocses, Proc. London
Math. Soc. (3) 56 (1988), no. 3, 451–
483

5 Representation type

In this chapter wewill see another property of an algebra that is preserved by separable
equivalence: the representation type of the algebra. We begin with definitions for
finite, tame and wild representation types and then state Drozd’s famous theorem that
these are the only possibilities. The proof of this theorem is far beyond the scope of
this text but for the interested reader full details can found in [Dro80] or [CB88].

In the remainder of the text we will assume that all algebras are finite dimensional
over an algebraically closed field.

5.1 Finite representation type

Definition 5.1 (Finite representation type). An algebra A is said to have finite represen-
tation type if there exists only finitely many isomorphism classes of indecomposable
right (equivalently left) A-modules.

Example. We have already seen several examples of algebras of finite representation
type. For instance the path algebra of

● α2 = 0α

has two indecomposable modules that can be represented by:

k k

k

The first module is the one-dimensional simple module where α acts as zero. The
second is a two-dimensional module where the arrow represents the action of α. Thus
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if e1 and e2 are basis elements then α acts by

e1 ↦ e2
e2 ↦ 0

Thealgebras of finite representation type are verywell studied and in fact for group
algebras they are completely classified. If the characteristic of k does not divide the
order of a groupG then kG is semisimple and hence of finite-type. If the characteristic
divides the order of G however, then Higman proved in [Hig54] that kG is of finite-
type if and only if a Sylow p-subgroup is cyclic. More generally if a block algebra is of
finite type then it has cyclic defect group.

A further classification of finite-type algebras comes from Gabriel’s theorem (a
good reference text for this theorem can be found in [BGP73, 3.1] or [ASS06, VII 5.10]).
If Q is a finite connected quiver without oriented cycles then the path algebra kQ is
of finite representation type if and only if the undirected version of Q is one of the
Dynkin diagrams

An = ● ● ● with n vertices

Dn =

●

● ● ●

●

with n vertices

E6 =
● ● ● ● ●

●

E7 =
● ● ● ● ● ●

●

E8 =
● ● ● ● ● ● ●

●

Together with theorem 1.7 of chapter VII of [ASS06] this fully classifies the indecomp-
osable finite dimensional hereditary algebras up to Morita equivalence. Note that
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hereditary algebras are a particular nice collection of algebras characterised by the
property that submodules of projective modules are themselves projective.

5.2 Tame representation type

Definition 5.2 (Tame representation type). An algebra A over a field k is said to have
tame representation type if it does not have finite representation type and given any
d ∈ N there is a finite set of k[t]-A–bimodules {X i}, free and finitely-generated as
k[t]-modules, such that for all but finitely many d-dimensional indecomposable A-
modulesM (up to isomorphism) we have

M ≅ k[t]
(t − λ)

⊗
k[t]

X i

for some X i and some λ ∈ k.

Remark. Some authors include finite representation type within the class of tame rep-
resentation type however here we consider the two to be mutually exclusive.

The definition of tame given above is simply a precise way of saying that all but
finitely many (isomorphism classes of) indecomposable A-modules of a given dimen-
sion are covered by a finite set of 1-parameter families of modules.

Example. Consider the path algebra for the quiver

● ●
α

β
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This has the following isomorphism classes of indecomposable modules:

k 0

k
⊕ k
k

k
⊕ k
k ⊕
⊕ k
k

0 k

k
k ⊕

k

k
k ⊕
⊕ k
k ⊕

k

k k

k2 k2

k3 k3

1

λ

Id

J2(λ)

Id

J3(λ)

k k

k2 k2

k3 k3

0

1

J2(0)

Id

J3(0)

Id

...
...

...
...

where: Jn(λ) is the n×n Jordan block with eigenvalue λ ∈ k; unmarked arrows k → k,
represent the identity morphism; the notation Ð→ represents the arrow α; and the
notation Ð→ represents the arrow β.

Thus the algebra is tame: the third column contains 1-parameter families of mod-
ules and all the other columns contain the finite number of exceptions.

There has been plenty of work on classifying the tame algebras. For instance Bon-
darenko and Drozd showed in [BD77] that the only tame group algebras are those
with dihedral, semidihedral, or generalized quaternion Sylow 2-subgroups in charac-
teristic 2.

We saw earlier a classification of the path algebras of finite connected quivers that
are of finite-type and a similar classification exists for the tame algebras (see [Rin80]).
The path algebra of a finite connected quiver is tame if and only if the quiver has
no oriented cycles and the undirected version of the quiver is one of the following
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Euclidean diagrams.

Ãn =

● ●

● ●

● ●

with n + 1 vertices

D̃n =

● ●

● ● ●

● ●

with n + 1 vertices

Ẽ6 =

● ● ● ● ●

●

●

Ẽ7 =
● ● ● ● ● ● ●

●

Ẽ8 =
● ● ● ● ● ● ● ●

●

Notice that the example of an algebra of tame representation type we saw above is
an algebra for a quiver of type Ã1.

5.3 Wild representation type

Definition 5.3 (Wild representation type). An algebra A over a field k is said to have
wild representation type if there is a k⟨u, v⟩-A–bimodule X, finitely generated free as
a k⟨u, v⟩-module, such that

• if M is an indecomposable right k⟨u, v⟩-module then M ⊗
k⟨u ,v⟩

X is indecompos-

able;

• for k⟨u, v⟩-modulesM and N : ifM ⊗
k⟨u ,v⟩

X ≅ N ⊗
k⟨u ,v⟩

X thenM ≅ N .
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Remark. The notation k⟨u, v⟩ represents the free k-algebra on two generators.

One way of interpreting this definition is that an algebra has wild representation
type if its module category is at least as complicated as that of the free algebra on two
generators. A d-dimensional module of this algebra corresponds to a pair of d × d
matrices. Two modules are then isomorphic if and only if there is a change of basis
sending one pair ofmatrices to the other. Thus classifyingmodules for the free algebra
on two generators is equivalent to classifying pairs of matrices up to simultaneous
conjugation, which is a notoriously hard problem.

Theorem 5.4: Drozd, 1977

Every finite-dimensional algebra over an algebraically closed field has exactly one
representation type: finite, tame or wild.

Drozd’s trichotomy theorem tells us that if an algebra is not finite or tame then
it must be wild. For example, all group algebras that we have not already classified
as finite-type or tame-type must be wild. This means that the vast majority of group
algebras are wild: all groups except those with dihedral, semidihedral or generalized
quaternion Sylow 2-subgroups in characteristic 2 (tame type), or cyclic groups in any
characteristic (finite type). Similarly the classification of path algebras for quiverswith-
out directed cycles tells us that any other quiver than those of theDynkin or Euclidean
types must be wild.

Example. Let A be the path algebra for the quiver

● ●

over a field k and consider the k⟨u, v⟩-A–bimodule

X = k⟨u, v⟩ k⟨u, v⟩

u

1

v

A module for k⟨u, v⟩ is given by a k-vector space, V and two endomorphisms α and
β. Given such a module Vα ,β we have that

Vα ,β ⊗
k⟨u ,v⟩

X = V V

α
1

β
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which is indecomposable if Vα ,β is indecomposable. Moreover if

Vα ,β ⊗
k⟨u ,v⟩

X ≅ Vα′ ,β′ ⊗
k⟨u ,v⟩

X

then we have a commutative diagram with isomorphisms f and д

V V

V V

α 1 β α′ 1 β′

f

д

Wemust have that f = д by commutativity of the identity square. We also have

f α = α′ f f β = β′ f

by the other two squares and so Vα ,β ≅ Vα′ ,β′ . This is enough to show that X satisfies
the properties of definition 5.3 and hence A is wild.

5.4 Preservation of representation type

Linckelmann showed in proposition 3.3 of [Lin11b] that if two symmetric algebras are
separably equivalent then they must have the same representation type. We aim to
show that this result holds for general finite dimensional algebras.

Proposition 5.5. Let A and B be k-algebras such that A separably divides B. If B has
finite representation type then so does A. Moreover if B is semisimple then so is A.

Proof. Let MA B and NB A be bimodules giving the separable division so that AA A is
a bimodule summand of MA ⊗

B
NA .

Let X1 , . . . , Xr be the indecomposable B-modules.

Let Y1 , . . . ,Ys be the indecomposable summands of the A-modules X i ⊗
B
N :

{Y1 , . . . ,Ys} = {X ∣X is a summand of X i ⊗
B
N for some 1 ≤ i ≤ r}

Let Y be an indecomposable A-module. We will show that Y is isomorphic to
one of the modules Yj and hence we have only finitely many isomorphism classes of
indecomposable A-modules.
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Since A is a summand of M⊗
B
N we know that Y is a summand of Y ⊗

A
M⊗

B
N .

This means that there is an indecomposable B-module X i such that Y is a summand
of X i ⊗

B
N and hence isomorphic to some Yj.

If B is semisimple then the same proof goes through with the additional property
that each X i is projective. This implies that each Yj is also projective and hence A is
semisimple.

There is an analogous result to proposition 5.5 for tame representation type, but
the proof requires an interpretation of the space of modules as a collection of affine
varieties. For tame algebras, each 1-parameter family of modules will correspond to a
1-dimensional variety. In the proof of the proposition we will draw a contradiction by
showing that if a separable factor is of wild type then one of these varieties must have
dimension greater than 1.

Let A be a k-algebra with k-basis {1 = a1 , . . . , as} so that

a ia j =
s
∑
l=1

λ(i j)l a l

for some constants λ(i j)l ∈ k.
Now each d-dimensional A-moduleM corresponds to a ring homomorphism

AÐ→ Endk(kd)

so there are d × d matrices α l , l ∈ {1, . . . , s} defining M. We can thus associate M
with the element α = (α1 , . . . , αs) ∈ ksd

2
.

Conversely, a point α ∈ ksd
2
corresponds to an A-module if the equations

α1 = Idd

α iα j =
s
∑
l=1

λ(i j)l α l

are satisfied. Since the only requirements on α are a series of linear equations this
is equivalent to requiring that α be in some Zariski closed subset of ksd

2
. Thus we

can interpret the space of A-module structures on kd as a particular affine variety.
We denote this variety by VA(d). Notice that the general linear group acts on kd by
a change of basis and so the orbits of this action give points in the algebraic variety
belonging to the same isomorphism class of modules.
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Proposition 5.6. Let A and B be algebras over an algebraically closed field k and let A
separably divide B. If B has tame representation type then A has finite or tame represen-
tation type.

Proof. We follow the ideas of de la Peña used in [dlP91, theorem 1.3] and [dlP96,
theorem 4.2].

As in the statement of the proposition, let B be a tame algebra over a field k and
let A be an algebra that separably divides B via the modules MA B and NB A . Seeking
a contradiction we assume that A is wild.

As A is wild there is a k⟨u, v⟩-A–bimodule Q that is finitely generated and free as
a k⟨u, v⟩-module and such that the functor

— ⊗
k⟨u ,v⟩

Q∶mod k⟨u, v⟩Ð→ modA

preserves indecomposability and non-isomorphism.
Let d be the rank of Q as a k⟨u, v⟩-module so that, in a similar way to the discus-

sion preceding the proposition, Q may be thought of as an element of

Q̃ ∈ k⟨u, v⟩sd
2

If we consider the 1-dimensional k⟨u, v⟩-modules as elements of k2 where the coordi-
nates represent the actions of u and v then we get a regular map

f ∶ k2 Ð→ VA(d) ⊆ ksd
2

given by evaluating Q̃. The important point here is that if Mλ ,µ is a 1-dimensional
k⟨u, v⟩module then

Mλ ,µ ⊗
k⟨u ,v⟩

Q

and
f (λ, µ)

represent the same module. More discussion on this idea can be found in [DS86].
Notice that no two points in k2 represent isomorphic k⟨u, v⟩-modules, hence the

map f is injective and dim f (k2) = 2. We now draw a contradicition to this by show-
ing the dimension must be at most 1.

We first note that by the choice of Q (and the assumption of wildness) we know
that f (k2) contains at most one representative of each isomorphism class of A-
modules and that this image can only contain indecomposable modules. Also notice
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that there exists an integer c such that if X is an A-module of dimension d then X⊗
A
M

has dimension less than cd.
Let X be a d-dimensional indecomposable A-module. We have that X is isomor-

phic to a summand of X⊗
A
M⊗

B
N and hence there is an indecomposable summand

Y of X⊗
A
M such that X is isomorphic to a summand of Y ⊗

B
N .

The dimension of X⊗
A
M is less than cd and for each d′ < cd there is a finite set of

k[t]-B–bimodules
{Y d′

1 ,Y d′
2 , . . .,Y d′

rd′}

such that any indecomposable B-module of dimension d′ is isomorphic to

Sλ ⊗
k[t]

Y d′
i

for some simple k[t]-module

Sλ ≅
k[t]
(t − λ)

and some 1 ≤ i ≤ rd′ .
This means that there is a finite set of k[t]-A–bimodules (indexed by a finite set

I)
{X i}i∈I = {Y d′

i ⊗B N ∣ d′ < cd , 1 ≤ i ≤ rd′}

with the property that X is isomorphic to a summand of

Sλ ⊗
k[t]

X i

for some λ ∈ k and some i ∈ I.
For each i ∈ I define

C i = {(λ, X) ∣X is a summand of Sλ ⊗
k[t]

X i} ⊆ k × f (k2)

and consider the projections

C i k

f (k2)

π i
1

π i
2

Since f (k2) contains at most one representative of each isomorphism class the
Krull–Schmidt theorem tells us that the preimage of π i

1 is finite for each λ ∈ k. Hence

dimC i ≤ dim k = 1
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Considering the other projections: we have that

⋃
i∈I

π i
2(C i) = f (k2)

is a finite union and so dim f (k2) ≤ 1 giving a contradiction and implying that A
cannot be wild.

As a direct corollary of propositions 5.5 and 5.6 we have the following theorem.

Theorem 5.7:

If A and B are separably equivalent algebras over an algebraically closed field k
then A and B have the same representation type: finite, tame or wild.

5.5 Domestic and Polynomial Growth

Algebras of tame representation type can be broken down further into subcategories.
These subdivisions are classified by how many families of modules are required to
cover the indecomposables of an algebra. As such we begin with some notation to
represent how many families of modules are required in each dimension.

Let A be a tame algebra. Definition 5.2 of tameness indicates that for each dimen-
sion d ∈ N we have a collection of k[t]-A–bimodules satisfying certain properties.
We denote by

µA(d) ∈N

the minimum number of these modules required to satisfy the definition.

Definition 5.8 (Domestic algebra). An algebra A is said to be domestic if there is some
integer N such that µA(n) ≤ N for all positive integers n.

Definition 5.9 (Polynomial growth). An algebra A is said to be of polynomial growth
if there are some positive integers C and γA such that

µA(n) ≤ CnγA

for all positive integers n. If the integer γA is chosen minimally with respect to the
definition then it is called the growth rate.
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There is another characterisation of tameness of an algebra using the theory of
generic modules and this idea will allow us to prove that separable equivalence pre-
serves not only the broad categories of finite, tame andwild but also these subdivisions
of tame.

Recall that if MA is a right A-module then M is naturally a left module for its
endomorphism ring End(MA) (in fact it is an End(MA)-A–bimodule).

Definition 5.10 (Endolength). Let MA be an A-module. We say that the endolength
ofM is its length when considered as amodule for its endomorphism ring and denote
this by end len(M). We say that the module is endofinite if it has finite endolength.

Definition 5.11 (Generic module). An indecomposable A-module M is said to be a
generic module if it has infinite length over A but has finite length over End(MA).

Generic modules are intricately linked to the 1-parameter families of modules we
have seen in the definition of tameness as the next theorem can attest.

Theorem 5.12: Crawley-Boevey, [CB91, 5.7]

For an algebra A, let дA(n) denote the number of isomorphism classes of generic
A-modules of endolength n. Then

µA(n) =∑
d ∣n

дA(d)

The full interaction between 1-parameter families and generic modules is highly
complex and so rather than delve fully into the theory we aim to gain an understand-
ing via an example.

Example. Returning to the example of a tame algebra we saw on page 51: let A be the
path algebra for the quiver

● ●
α

β

Recall that A has a single 1-parameter family in each even dimension

k k
1

λ

k2 k2
Id

J2(λ)

k3 k3
Id

J3(λ)
⋯
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and thus theorem 5.12 tells us that we should have exactly one generic module and its
endolength is 2.

We claim that the module G,

G = k(t) k(t)
1

t

is a generic module, where k(t) is the field of rational functions.
First let us consider an endomorphism of this module. This is given by a pair of

k-endomorphisms f and д, such that the squares 1 f = д1 and t f = дt commute.

k(t) k(t)

k(t) k(t)

1

t

1

t

f д

Commutativity with 1 simply means that f = д. We will show that commutativity
with t means that f is determined by f (1) and hence End(GA) ≅ k(t).

If f (1) = r ∈ k(t) then since f commutes with t

f (tn) = tn f (1) = tnr

and thus if p ∈ k[t] is a polynomial then

f (p) = pr.

Similarly by the commutativity with polynomials

r = f (1) = f (p⧸p) = p f (1⧸p)

and so
f (1⧸p) = r⧸p.

So in particular dimk(t)(G) = 2 and G is endofinite.
Now we need only show that G is indecomposable. Seeking a contradiction let

us assume that G splits. Using the identity arrow we can identify the two copies of



62 CHAPTER 5. REPRESENTATION TYPE

k(t) and so we must have that k(t) splits as a k[t]-module. This means there is a
non-trivial idempotent in Endk[t] k(t) ≅ Endk(t) k(t) ≅ k(t), but since k(t) is a field
this cannot be the case.

Given this generic module it is clear to see how we obtain the family of 2-
dimensional modules. In general if G is a generic module then we may find a k[t]-
A–bimoduleM such that

G ≅ k(t) ⊗
k[t]

M

then G provides us with the further families of modules given by k(t)⊗
k[t]

nM where
nM is the module given by

nM =

n-copies
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
M ⊕M ⊕ ⋅ ⋅ ⋅ ⊕M

with the action

(m1 ,m2 , . . .,mn)t = (m1t,m2t −m1 , . . . ,mn t −mn−1)

In this example the 4-dimensional family would be provided by

k[t]⊕ k[t] k[t]⊕ k[t]

1

t

( t −10 t ) ( t −10 t )

with the loops representing the action of t. Since the action here is via Jordanmatrices,
localising this module at each (t − λ) for λ ∈ k gives the modules of the 1-parameter
family seen earlier.

As immediate corollaries to theorem 5.12 we can provide alternative definitions of
tame, domestic and polynomial growth, in terms of the number of generic modules.

Corollary 5.13. An algebra A is tame if and only if дA(n) <∞ for all n ∈N.

Corollary 5.14. An algebra A is of polynomial growth if and only if there are integers C
and δ such that

дA(n) ≤ Cnδ

for all positive integers n.

Corollary 5.15. An algebra A is domestic if and only if it has only finitely many generic
modules.
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In order to prove that separable equivalence preserves these finer-grain classes of
representation type we will need the following theorem on decomposability of endofi-
nite modules.

Theorem 5.16: Endofinite Decomposability

IfM is an endofinite module then there is a finite set of indecomposable modules
M i , and cardinals κ i , such thatM decomposes as

M ≅ M(κ1)1 ⊕ ⋅ ⋅ ⋅ ⊕M(κn)n .

Moreover ifM i ≇ M j for all i ≠ j then end len(M) =
n
∑
i=1

end len(M i).

The notationM(κ) denotes the direct sum of κ copies ofM.

For details on the proof of this theorem see [Pre09, 4.4.29], which is also a very
good reference on endofinite modules in general.

We require one final lemma before we state and prove the theorem.

Lemma 5.17. Let MA B be a finitely generated bimodule. There is a constant cM such
that if XA is endofinite then X⊗

A
M has endolength

end len (X⊗
A
M) ≤ cM end len(X).

Proof. AsM is finitely generated there is an integer n and a left A-epimorphism An →
M. This map gives a sequence

X⊗
A
An X⊗

A
M 0

Xn

≅

that is exactwhen considered as leftmodules forEndA(X). Thus n end len(X) bounds
the length of X⊗

A
M as an EndA(X)-module.

If we have a chain of EndB(X⊗
A
M)modules

0 = Mr ⪇ ⋯ ⪇ M1 ⪇ X⊗
A
M

then this can be considered as a chain of EndA(X)modules via the canonical homo-
morphism

EndA(X) Ð→ EndB(X⊗
A
M)

ϕ ↦ ϕ⊗
A
M
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and hence end len(X⊗
A
M) ≤ n end len(X).

Theorem 5.18:

Let A and B be finite dimensional algebras over an algebraically closed field k
such that A separably divides B.

(a) If B is of polynomial growth then A is of polynomial growth.

(b) If B is domestic then A is domestic.

In particular the properties of domestic and polynomial growth are preserved
under separable equivalence.

Proof. We will first prove part (a):
Let MA B and NB A be the modules providing the separable division.
Denote the generic B-modules of endolength d by

dG1 , dG2 , . . ., dGдB(d).

If H is a generic A-module of endolength d then by theorem 5.16 and lemma 5.17

H⊗
A
M ≅

m
⊕
j=1

d jG(κ j)
i j ⊕ F

with 1 ≤ m ≤ cMd and d j ≤ cMd for all j and for some finite lengthmodule F. That this
decomposition is essentially unique follows from section 4 of [CB92], in particular see
the remarks following proposition 4.5.

We have thatH is a summand ofH⊗
A
M⊗

B
N . If H is a summand of F ⊗

B
N then H

has finite length, which is a contradiction as H is generic. Therefore H is a summand
of d jG i j ⊗B N for some j.

Now defineH(d) as follows:

H(d) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
H ∈ modA

RRRRRRRRRRRRR

H a generic summand of d
′
G i ⊗

B
N

d′ ≤ cMd , 1 ≤ i ≤ дB(d′)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Thus if H is any generic module with end len(H) ≤ d then H ∈H(d).
It is now enough to bound the cardinality ofH(d) by a polynomial in d.



5.6. EXAMPLES OF INEQUIVALENCE 65

The number of distinct endofinite summands of d
′
G i ⊗

B
N is bounded above by its

endolength and hence by cNd′. The number of generic modules of endolength d′ is
given by дB(d′). We have

∣H(d)∣ ≤ ∑
d′≤cMd

(cNd′)дB(d′)

≤ ∑
d′≤cMd

(cNd′)Cd′δ as B is of polynomial growth

≤ (cMd)(cN cMd)C(cMd)δ

≤ C′dδ+2

and hence A is of polynomial growth.
For part (b) we may start by following the same proof through to the definition of

H.
As B is domestic there are only finitely many generic modules, thus there is some

integer d for which дB(d′) = 0 for all d′ > d. In particular

H(d) =H(d′)

for all d′ > d. Thus every generic Amodule is in the finite setH(d).

5.6 Examples of inequivalence

The discussion at the end of section 4.1 led us to ask whether or not there exists cyclic
groups Cpn and Cpm such that their group algebras over a field of characteristic p are
separably equivalent. Unfortunately the best we can offer is a partial solution to this
problem. Specifically we will demonstrate the inequivalence of the group algebras for
several small cyclic groups, leaving the general question wide open.

As we have seen previously (over a field of characteristic p) there is an isomor-
phism between the group algebra of a cyclic p-group and a truncated polynomial al-
gebra. If we let

Λn =
k[x]
(xn)

denote the truncated polynomial algebra of length n then over a field of characteristic
p we have an isomorphism kCpn ≅ Λpn . By phrasing the above question in terms of
Λn we can achieve results for a general field that will then give answers for the cyclic
group case over fields with the correct characteristic.
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The algebraΛn has finite representation type with exactly n indecomposablemod-
ulesM i ≅ xn−iΛn :

M1 M2 Mn

k k k
k ⋯

...
k

n-times

Let us construct the Auslander–Reiten quiver for this algebra (see section 2.5), so
for each i and j we wish to calculate a basis for

rad(M i ,M j)
rad2(M i ,M j)

If i = j then rad(M i ,M i) is generated by the map given by multiplication by x
but notice that this map is the same as the composition

M i M i−1 M i

k k k
...

... k
k k

...
k k

which is in rad2(M i ,M i) and hence we have no self-arrows in the quiver. Next con-
sider the case j = i − 2, the surjective homomorphism factors throughM i−1:

M i M i−1 M i−2

k k k
...

...
...

k k k
k k
k

and so againwe have no arrows in theAuslander–Reiten quiver betweenM i andM i−2.
Similar treatment shows that we have no arrows M i → M i+2. We are left to consider
maps M i → M i±1. The surjection β i−1∶M i → M i−1 and the inclusion α i ∶M i → M i+1

factor through no other indecomposable module and hence these maps give arrows
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in the Auslander–Reiten quiver. Notice however that any other map factors through
a map in rad(M i ,M i) and hence does not contribute an arrow.

Let us now consider the relations these maps satisfy. The path β i−1α i−1 represents
the composition we saw above (which corresponds to multiplication by x). The path
α iβ i represents this same map and hence we have the relations α iβ i = β i−1α i−1 for
1 < i < n and α1β1 = 0.

We have calculated that the Auslander–Reiten quiver for Λn is

1 2 . . . n
α1

β1

α2

β2

αn−1

βn−1

α1β1 = 0
α iβ i = β i−1α i−1 for 1 < i < n

If kQn is the Auslander algebra of Λn then the category mod kQn is equivalent
to the category Fun(modΛn ,mod k). This fact together with proposition 4.20 means
that if Λn and Λm are separably equivalent then kQn and kQm are separably equiva-
lent.

If we instead restrict to the stable category, we must add additional relations for
all maps that factor through a projective module. In this example we have a single
projective module Λn thus we must add the relation βn−2αn−2 = 0 and remove the
vertex n.

1 2 . . . n − 1
α1

β1

α2

β2

αn−2

βn−2

α1β1 = βn−2αn−2 = 0
α iβ i = β i−1α i−1 for 1 < i < n − 1

The path algebra for the quiver with relations given above is called the prepro-
jective algebra of type An−1. Here the An−1 refers to the Dynkin diagram and note
that preprojective algebras can be defined for many different quivers (see section 3 of
[GLS05] for more details). Now proposition 4.21 tells us that if Λn and Λm are sepa-
rably equivalent then the preprojective algebras of type An−1 and Am−1 are separably
equivalent.

Theorem 5.19:

The algebras

Λn =
k[x]
(xn)

Λm =
k[x]
(xm)

are not separably equivalent for positive integers n ≤ 6 and m ≠ n.



*Note that Linckelmann gives an
alternative proof of the n = 2 case
in example 10.7 of [Lin11a].

[Lin11a] Linckelmann, Coho-
mology of block algebras of
finite groups, Representations of
algebras and related topics, EMS
Ser. Congr. Rep., Eur. Math. Soc.,
Zürich, 2011, pp. 189–250
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Proof. We prove the claim by handling each n on a case-by-case basis.

n = 1

ThealgebraΛ1 is isomorphic to the field k and so ifΛm is separably equivalent to
Λ1 then according to proposition 4.2 Λm must be separable and hence semisimple.
It is clear that for anym > 1 the algebraΛm is not semisimple and hence the algebras
are separably inequivalent.

n = 2*

IfΛ2 is separably equivalent toΛm for somem > 2 then by the discussion above
we see that this gives a separable equivalence of the preprojective algebras of types
A1 and Am−1. The first of these is isomorphic to the base field k, but it is clear that
for m > 2 the preprojective algebra Am−1 is not semisimple, therefore the algebras
cannot be separably equivalent.

n = 3

Wedenote by Γn the preprojective algebra of type An . As in the last two casesΛ3

andΛm being separably equivalent means that Γ2 and Γm−1 are separably equivalent.
From proposition 4.21 we see that this means the categories Fun(mod Γ2 ,mod k)
and Fun(mod Γm−1 ,mod k) are separably equivalent. Now Γ2 is the path algebra of

● ●
α

β
αβ = βα = 0

with the projective modules given by

k k
1

0

k k
0

1

Thus inmod Γ2, once we have factored out projective modules, we are left with just
the simple modules

k 0 0 k

with no non-trivial maps between them. This shows that Fun(mod Γ2 ,mod k) is
equivalent to the representations of the quiver with two vertices and no arrows: a
semisimple algebra.
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To show that Fun(mod Γm−1 ,mod k) is not semisimple when m > 2 we need
only demonstrate that the AR-quiver of Γm−1 contains an arrow between two ver-
tices representing non-projective modules. We refer to the work of Geiss, Leclerc
and Schröer in [GLS05]. Proposition 3.3 of this text tells us that Γm has infinitely
many isomorphism classes of indecomposable modules when m > 4, thus the AR-
quiver must contain an arrow between two non-projectives. For smaller m, sec-
tion 20 gives the explicit AR-quivers and shows that the AR-quivers of both Γ3 and
Γ4 contain an arrow between non-projectives.

n = 4

If Λ4 and Λm were separably equivalent then by proposition 4.6 we would have
that their tensor products with a fixed third algebra would be equivalent also. For
an algebra A, the algebra of upper triangular matrices with entries from A

⎛
⎝
A A
0 A

⎞
⎠

is called the 2× 2 triangular matrix algebra, T2(A). This is isomorphic to the tensor

product of Awith the path algebra 1 2
α

via the isomorphism

A⊗ (1 2)α Ð→ T2(A)

a⊗ e1 ↦ ( a 0
0 0 )

a⊗ e2 ↦ ( 0 0
0 a )

a⊗ α ↦ ( 0 a
0 0 )

The representation types of algebras of this form were classified in [LS00]. These
were classified via lists of quivers that may appear as a factor algebra of a subquiver
of a Galois covering. The relevant sections are theorems 1 and 4, together with the
lists of quivers in sections 2 and 5. The algebra Λm is the path algebra for the quiver

● α αm = 0
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The Galois covering of this is given by the quiver

. . . ● ● . . . ● ● . . .

m-vertices

with dotted lines representing the relation that the path is zero. For more details on
this example and Galois coverings in general see [Gab81, 2.8ff.]. The key point to
note regarding this quiver is that form > 4 the Galois covering contains a subquiver
with

● ● ● ● ● ●

as a factor algebra, which is [LS00, 2.74] and this means that T2(Λm) is wild. When
m = 4 there is no subquiver containing a factor algebra of wild type but it does
contain

● ● ● ● ●

as a factor algebra, which is [LS00, 5.12] and shows that T2(Λ4) is tame. Finally we
can check that no quiver in section 5 of the text appears as a subfactor of the Galois
quiver when m < 4 and hence for these T2(Λm) are of finite type. We have

T2(Λn) has finite representation type for n < 4
tame n = 4
wild n > 4

Since T2(Λ4) and T2(Λm) have different representation type for m > 4 the-
orem 5.7 tells us that Λ4 and Λm cannot be separably equivalent. Note that this
method also gives an alternative proof for the case n = 3.

n = 5 and n = 6

Finally we can see from [GLS05, proposition 3.3] that

Γn has finite representation type for n < 5
tame n = 5
wild n > 5
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and since a separable equivalence of Λn and Λm induces an equivalence of Γn−1 and
Γm−1 we see that when n ∈ {5, 6} and m ≠ n then Λn and Λm cannot be separably
equivalent.

Theorem 5.19 is a long way from answering the question as to whether or not alge-
bras for cyclic groups can be separably equivalent. It does however demonstrate many
examples of how one can show that algebras are not separably equivalent, using many
of the propositions of the preceding sections. The proof of the theorem uses represen-
tation type to differentiate between algebras for n ≤ 6. For larger n all the algebras we
have constructed from Γn have wild representation type and so it would appear new
methods will be required to show the inequivalence of these algebras. We conclude
with the corollaries:

Corollary 5.20. Let k be a field of characteristic 2. The group algebras kC2, kC4 and
kC2n are pairwise separably inequivalent for any n > 2.

Corollary 5.21. Let k be a field of characteristic 3. The group algebras kC3 and kC3n

are separably inequivalent for any n > 1.

Corollary 5.22. Let k be a field of characteristic 5. The group algebras kC5 and kC5n

are separably inequivalent for any n > 1.
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6 Representation dimension

Therepresentationdimension of an algebrameasures how far the algebra is frombeing
of finite representation type. Auslander introduced the concept in [Aus71] and proved
that an algebra is semisimple if and only if its representation dimension is equal to 1,
and otherwise an algebra is of finite representation type if and only if its representation
dimension is 2.

The purpose of this chapter is to use the separable equivalence between a group
algebra and the group algebra of a Sylow p-subgroup (proposition 4.5) to give an upper
bound for the representation dimension of group algebras for groups with elementary
abelian Sylow subgroups. Wewill present everything in this chapter in terms of groups
and their Sylow p-subgroups however all the results generalise easily to the case of
blocks and defect groups.

Throughout this chapter we will only deal with finite dimensional algebras over
algebraically closed fields and finitely generated modules. We begin with several defi-
nitions that will lead on to the definition of representation type.

Definition 6.1 (Projective dimension). LetM be an A-module and let

. . . Pn . . . P2 P1 P0 M 0

be a projective resolution of M. We say that the resolution has length n if Pn ≠ 0 but
Pi = 0 for all i > n. If this property does not hold for any n, then the resolution is of
infinite length.

The projective dimension pd(M), is defined to be the minimal length of a projec-
tive resolution.

Definition 6.2 (Global dimension). Let A be a k-algebra. The global dimension of A,
denoted by gl dim(A), is defined to be the supremum of the projective dimensions of
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all A-modules.
gl dim(A) = sup{pd(M) ∣M an A-module}

Definition 6.3 (Generator/cogenerator). Let A be a k-algebra. A moduleM is said to
generate the module categorymodA, if for any module N there is an integer n and an
epimorphism

Mn Ð→ N Ð→ 0.

AmoduleM is said to cogenerate the module category if for any module N there is an
integer n and a monomorphism

0Ð→ N Ð→ Mn .

Notice that M is a generator if and only if M contains each indecomposable pro-
jective module as a direct summand. Similarly, M is a cogenerator if it contains each
indecomposable injective module as a direct factor. In the case of self-injective alge-
bras, such as group algebras, these two properties are equivalent.

Definition 6.4 (Representation dimension). Let A be a k-algebra. If A is semisim-
ple then the representation dimension repdim(A), is defined to be 1, otherwise the
representation dimension of A is defined as follows:

repdim(A) = inf {gl dim (EndA(M)) ∣M generates and cogeneratesmodA}

It is an open question as to whether or not representation dimension is preserved
under separable equivalence, however it is known to be preserved for representation
dimension of 1 or 2. This fact is a direct consequence of the following result of Auslan-
der ([Aus71]) together with proposition 5.5.

Proposition 6.5. Let A be an algebra over an algebraically closed field k.

(a) repdim(A) = 1 if and only if A is semisimple;

(b) repdim(A) ≤ 2 if and only if A is of finite representation type.

Auslander also showed in [Aus71] that the Loewy length of a selfinjective alge-
bra provides an upper bound for its representation dimension. Iyama showed in
[Iya03] that the representation dimension of a general algebra is always finite, whilst
in [Rou06] Rouquier simultaneously gave the first example of an algebra with repre-
sentation dimension greater than 3 and showed that representation dimension can
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be arbitrarily large. Work of Bergh and Erdmann in [BE11] provide better bounds in
the case of Hecke algebras and group algebras of symmetric groups using the idea
of separable equivalence and passing to a Sylow p-subgroup. In order to use similar
techniques wewill first define a set ofmodules for an elementary abelian p-group. The
direct sum of the modules in this set will provide a generator of the module category
and it is this module we will use to provide an upper bound for the representation
dimension.

6.1 Bounding representation dimension

We will aim to bound the representation dimension of group algebras. We saw in
proposition 4.5 that over a field of characteristic p a group algebra is separably equiv-
alent to the group algebra of a Sylow p-subgroup. If P is a p-group we may use this
separable equivalence together with the following theorem of Bergh and Erdmann to
find a generator of kP whose global dimension will simultaneously bound the repre-
sentation dimension of all group algebras kG where P is a Sylow p-subgroup of G.

Theorem 6.6: [BE11, theorem 2.3]

Let A and B be finite dimensional algebras and suppose there exists a B-module
M such that

(a) A separably divides B through XA B and YB A ; and

(b) HomA(Y ,M⊗
B
Y) ∈ addB M

then gl dimEndA(M⊗
B
Y) ≤ gl dimEndB(M).

If we have that P is a Sylow p-subgroup ofG then the separable equivalence of kP
and kG is through the bimodules kGkG kP and kGkP kG . In this context theorem 6.6
becomes the following corollary.

Corollary 6.7. Let P be a Sylow p-subgroup of G and k a field of characteristic p. IfM
is a kP-module such thatM

G
↑↓P ∈ addM then

gl dimEndkG(M
G
↑) ≤ gl dimEndkP(M).
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If we can find a generator M of kP such that addM is closed under induction to
any supergroup G and restriction back down to P then since M

G
↑ is a generator of

kG the representation dimension of kG is bounded above by the global dimension of
EndkP(M).

Let us assume that for a p-group P we have a finite set of modulesMP with the
properties:

(res-ind): if X ∈MP and L is a subgroup of P then X↓
L

P
↑ ∈MP ;

(isom): if H and L are subgroups of P and there is an isomorphism ϕ∶H ∼→ L
then

ϕ(MP↓L) =MP ↓H,

where ϕ(MP↓L) denotes the set of H-modules obtained via ϕ by restric-
tion of scalars.

For any supergroup G of P, Mackey decomposition gives us

M
G
↑↓P ≅ ⊕

s∈P G P

(M⊗ s) ↓
s−1Ps∩P

P
↑

and so if
M = ⊕

X∈MP

X

then the properties (res-ind) and (isom) mean that addM is closed under induction-
restriction. We can therefore use M to simultaneously bound the representation di-
mension of all group algebras for groups with P as a Sylow p-subgroup.

6.2 Elementary abelian groups

In this section we will define a class of modules for elementary abelian groups that is
closed under induction-restriction and that contains a generator of the group algebra
(the regular module). Using the remarks made at the end of the last section we will
use this class ofmodules to bound the representation dimension for all group algebras
with the given elementary abelian group as a Sylow p-subgroup.

Definition 6.8 (MP). Let P be an elementary abelian p-group and k a field of char-
acteristic p. LetMP be the set of indecomposable kP-modules that is minimal with
respect to the following properties:
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(a) kP ∈MP ;

(b) if X ∈MP , H is a subgroup of P and Z is an indecomposable summand of X↓
H

P
↑

then Z ∈MP ;

(c) if X ∈ MP , d is a positive integer and Z is an indecomposable summand of
X⧸radd X then Z ∈MP .

Remark. Notice that by definitionMP satisfies the (res-ind) property of the last sec-
tion. It is also clear from the symmetry in the definition that MP is closed under
automorphisms of P. Given any pair of isomorphic subgroups of P there is an auto-
morphism of P mapping one to the other and we therefore also have that P is closed
under the (isom) property. Thus ifMP is finite (which we show in proposition 6.16)
and we let

M = ⊕
X∈MP

X

then we can calculate an upper bound on the global dimension of End(M) and
this will bound the representation dimension of kG for any group G with Sylow p-
subgroup isomorphic to P.

For convenience we will denote the quotient by a power of the radical

X(m) =
X

radm X
.

Additionally we define the following classes:

MP↓H = {Z ∣ Z an indecomposable summand of X↓
H
for X ∈MP}

MH↑P = {Z ∣ Z an indecomposable summand of XP
↑ for X ∈MH}

We will continue by proving several useful properties of this class of modules. To
do this it will be convenient to define an integer-valued property ℓ for each indecomp-
osablemodule inMP . We constructmodules beginning with kP and applying a finite
number of steps X ↦ Z where

(a) Z is an indecomposable summand of X↓
H

P
↑ for some subgroup H < P; or

(b) Z is an indecomposable summand of X(d) for some positive integer d.
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It is clear that any module X ofMP is obtained in this manner and we define ℓ(X)
to be the smallest number of steps required for this to be true, for example ℓ(kP) = 0
and ℓ(k) = ℓ(kP(1)) = 1.

Proposition 6.9. If H is a subgroup of P thenMH↑P ⊆MP .

Proof. Let X ∈MH . We perform induction on ℓ(X).
Firstly if ℓ(X) = 0 then X = kH, but kHP

↑ = kP and thus the result is true. Now
assume that if Y ∈ MH with ℓ(Y) < ℓ(X) then Y

P
↑ ∈ MP . Note that since we are

working inside a p-group, Green’s indecomposability theorem (see [Gre59]) means
that induction preserves indecomposability. We have that X can be expressed in one
of the following two ways: if Y is such that ℓ(Y) = ℓ(X) − 1 then either

(a) X is a summand of Y↓
L

H
↑ for some L < H; or

(b) X is a summand of Y(m) for some positive integer m.

(a) We have that Y is a summand of Y P
↑↓H and so X

P
↑ is a summand of Y

P
↑↓L

P
↑ but

these summands are inMP since Y
P
↑ is inMP .

(b) Without loss of generality we can assume that ∣P ∶ H∣ = p and that

H = ⟨д2 , . . . , дn⟩ < ⟨д1 , д2 , . . . , дn⟩ = P

If we let x = (д1−1) then the induction ofY to P can be decomposed asH-modules

Y
P
↑↓H ≅

p−1
⊕
s=0

Y ⊗ x s .

Similarly we have

radm (Y P
↑)↓H ≅

p−1
⊕
s=0

radm−s Y ⊗ x s

where we use the convention radi Y = Y whenever i ≤ 0. Thus we can put these
together and get that

Y
P
↑(m)↓H ≅

min(p−1,m)
⊕
s=0

Y(m−s)⊗ x s

In particular this module contains X as a summand. This together with the fact that
Y

P
↑ is inMP gives the result.

Proposition 6.10. If P is an elementary abelian p-group and H is a subgroup of P then
MP↓H =MH .
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Proof. For each Z ∈MH , Z is a summand of Z
P
↑↓H. This together with proposition 6.9

means thatMH ⊆MP↓H . As with the last proposition we prove the reverse inclusion
by induction on ℓ(X) for X ∈MP . The result is clear when X = kP and so we assume
that X is obtained in one step from Y and the result holds for Y .

(a) Let X be a summand of Y↓
L

P
↑ for some subgroup L of P. Then there is a module

Z ∈ML such that X ≅ Z
P
↑. By Mackey decomposition we then have

X↓
H
≅ ZP
↑↓H

≅ Z ↓
L∩H

H
↑ ⊕ ⋅ ⋅ ⋅ ⊕ Z ↓

L∩H

H
↑

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣P ∶ LH∣-copies

and summands of this are inMH by the induction hypothesis and proposition 6.9.

(b) Let X ≅ Y(m) for some positive integer m. We may assume that Y ≅ Z
P
↑

for some Z ∈ ML and a subgroup L of P. Further we may assume without loss of
generality that both H and L are index p subgroups of P so that we have

H = ⟨h, д3 , . . . , дn⟩

L = ⟨l , д3 , . . . , дn⟩

Suppose H ≠ L so that

kP ≅
p−1
⊕
i=0

kH⊗(l − 1)i

as H-modules and with the obvious action of l . Similarly we may decompose the
quotient

kP(m) ≅
p−1
⊕
i=0

kH(m−i)⊗(l − 1)i .

We can decompose

Y ≅
p−1
⊕
j=0

Z⊗(h − 1)i
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as L-modules with the obvious h action. Thus

X↓
H
≅ Y ⊗

kP
kP(m)

××Ö
H

≅
⎛
⎝

p−1
⊕
j=0

Z⊗(h − 1) j
⎞
⎠
⊗
kP
(
p−1
⊕
i=0

kH(m−i)⊗(l − 1)i)
××Ö
H

≅
⎛
⎝

p−1
⊕
j=0

Z⊗(h − 1) j
⎞
⎠
⊗
kP

⎛
⎝

p−1
⊕
j=0

p−1
⊕
i=0

k[L ∩H](m−i− j)⊗(l − 1)i(h − 1) j
⎞
⎠
××Ö
H

≅
p−1
⊕
j=0

⎛
⎝
Z ⊗

kL

p−1
⊕
i=0
(k[L ∩H](m−i− j)⊗(l − 1)i)

⎞
⎠
⊗(h − 1) j

≅
p−1
⊕
j=0

Z(m− j)⊗(h − 1) j

and so by the induction hypothesis the result holds. In the case that H = L a similar
yet much simpler argument applies.

We will use the module
M = ⊕

X∈MP

X

to bound the representation dimension of kP by calculating an upper bound for the
global dimension of EndkP(M). We will go on to show that ifG is a group with P as a
Sylow p-subgroup then the separable equivalence of kG and kPmeans that the global
dimension of EndkP(M) also bounds the representation dimension of kG.

The bound on the global dimension of EndkP(M) will come as a result of the al-
gebra being strongly quasi-hereditary using a result of Ringel, which was in turn based
on ideas of Iyama: see [Rin10] and [Iya03].

Definition 6.11 (Strongly quasi-hereditary). Let Γ be a finite dimensional algebra over
a field, let {S i}i∈I be the set of simple modules and Pi the projective cover of S i . We
say that Γ is left strongly quasi-hereditary with n layers if there is a function called the
layer function

l ∶ I → {1, . . . , n}

such that for each simple module S i there is an exact sequence

0→ R i → Pi → ∆ i → 0

satisfying:



[Rin10] Ringel, Iyama’s finiteness
theorem via strongly quasi-
hereditary algebras, J. Pure
Appl. Algebra 214 (2010), no. 9,
1687–1692
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(a) R i =⊕ j∈J Pj with l( j) > l(i) for each j ∈ J;

(b) if S j is a composition factor of rad∆ i then l( j) < l(i).

Theorem 6.12: [Rin10]

If Γ is a left-strongly quasi-hereditary algebra with n layers then gl dim(Γ) ≤ n.

We use the notation rX to denote the module X(m) wherem is maximal such that
radm X is non-zero. If X is semisimple so that radX = 0 then we saym = 0 and rX = 0.
We refer tom+1 in this context as the radical length of X whichwe denote by rad lenX.
Note that if rX = X(m) then r(rX) = X(m−1) and in this way any quotient by a power
of the radical of X may be written in the form riX (we say that r0X = X).

Let P be an elementary abelian p-group. We partition the setMP into a sequence
of subsets as follows. First we let M0

P = {kP}. Now assume we have defined Mi
P :

we let Mi+1
P be the subset of the remaining modules that are first maximal with re-

spect to radical length, and within these modules we choose those that have minimal
dimension.

Example. We highlight this ordering with an example for the group P = C2 × C2. We
have six modules inMP

and the classesMi
P are then given by

M0 = { }

M1 = { , , }

M2 = { }

M3 = { }

Theorem 6.13:

Let P be an elementary abelian p-group. If

M = ⊕
X∈MP

X

andMn
P is empty then EndkP(M)op is left strongly quasi-hereditary with at most

n layers.
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Proof. Let X be a module inMP so that

PX = HomkP(X ,M)

is an indecomposable projective EndkP(M)-module and let

π∶X → rX

be the natural projection. Define ∆X to be the quotient of HomkP(X ,M) by those
maps that factor through π:

∆X =
HomkP(X ,M)
{ f ○ π ∣ f ∶ rX → M}

and let RX = Hom(rX ,M). We claim that the short exact sequence

0Ð→ RX Ð→ PX Ð→ ∆X Ð→ 0

satisfies the properties in the definition of left strongly quasi-hereditary algebras.
(a) That RX is projective and that if X ∈Mi

P and rX ∈M
j
P then j > i is clear.

(b) Assume that the simple module corresponding to Y ∈M j
P is a composition

factor of ∆X . We have a map PY → ∆X that lifts to a map PY → PX that does not factor
through RX :

PY

0 RX PX ∆X 0

∄

By using the correspondence between addM and EndkP(M)op (see the discussion in
section 6.4 but note that here we are using the contravariant version) this gives a map
f ∶X → Y that does not factor through π:

Y

rX X
π

f
∄

If j > i then either rad lenY < rad lenX, or the radical lengths are equal but
dimY > dimX. In either case ifm+ 1 = rad len(X) then radm X must be in the kernel
of f .
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Now assume that j = i and f does not factor through π. In this situation the head
of X maps onto the head of Y and since the dimensions of X and Y are equal, f must
be an isomorphism.

This is enough to show that if Y is a composition factor of rad∆X then j < i.

Corollary 6.14. If P = Cp ×Cp × ⋅ ⋅ ⋅ ×Cp is an elementary abelian p-group of order pn

and

M = ⊕
X∈MP

X

then

gl dimEndkP(M) ≤ pn(n(p − 1) + 1)

Proof. First we note that the global dimension of an algebra is equal to the global
dimension of its opposite algebra and so we can apply theorem 6.13. The dimension
of kP is given by pn and the radical length of kP is given by n(p − 1) + 1, therefore
the number of distinct radical length–dimension pairs is bounded above by pn(n(p−
1) + 1). Since the radical length–dimension pairs index the setsMi

P this bounds the
number of layers and hence the global dimension.

We are able to define a new collection of modulesNP and by demonstrating that
this is the same as MP show that the number of distinct radical length–dimension
pairs is much smaller than the bound given in corollary 6.14.

NP = {ri(X
P
↑) ∣X ∈MH with ∣P ∶ H∣ = p and 0 ≤ i < p}

We wish to show that NP is the same class of modules asMP . To prove this we
require the following lemma.

Lemma 6.15. Let P be an elementary abelian p-group and letH be an index p subgroup
of P. If X is a kH-module then

(XP
↑)
(m)
≅ (X(m)

P
↑)
(m)

Proof. For a kP-module Y we have that

Y(m) ≅ Y ⊗
kP

kP(m)
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and so

(X(m)
P
↑)
(m)
≅ X ⊗

kH
kH(m) ⊗

kH
kP ⊗

kP
kP(m)

≅ X ⊗
kH

kH(m) ⊗
kH

kP(m)

Let
H = ⟨д2 , д3 , . . . , дn⟩ < ⟨д1 , д2 , . . . , дn⟩ = P

and x i = дi − 1. Then

radm kH = ⟨
n
∏
i=2

x s ii ∣ 0 ≤ s i < p,
n
∑
i=1

s i ≥ m⟩

< ⟨
n
∏
i=1

x s ii ∣ 0 ≤ s i < p,
n
∑
i=1

s i ≥ m⟩

= radm kP

and so the map
kH(m) ⊗

kH
kP(m) Ð→ kP(m)

[h]⊗[д] ↦ [hд]

is well-defined with inverse [д]↦ 1⊗[д]. We therefore have that

(X(m)
P
↑)
(m)
≅ X ⊗

kH
kH(m) ⊗

kH
kP(m)

≅ X ⊗
kH

kP(m)

≅ (XP
↑)
(m)

Proposition 6.16. NP =MP .

Proof. We aim to show thatNP satisfies the conditions definingMP .
It is easy to check that NCp =MCp and so we proceed by induction on the rank

of P with the additional assumption that each X ∈MP has simple head.
For an index p subgroup H of P we have by the induction hypothesis that each

X ∈MH has simple head and so each ri(XP
↑) also has simple head. This is enough

to show that modules in NP are indecomposable and hence by proposition 6.9 that
NP ⊆MP .
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Since kH ∈ MH we have that kP ∈ NP . Next we consider the restriction-
induction property. Given X ∈ NP ⊆ MP we know by proposition 6.10 that sum-
mands of X↓

L
are inML , we also have that there is an index p subgroup H of P with

L ≤ H < P and by proposition 6.9 summands of X↓
L

H
↑ are inMH , thus we have that

summands of X↓
L

P
↑ are inNP .

Now we need only show that NP is closed under taking quotients by powers of
the radical. If m is the radical length of X then the radical length of XP

↑ is m + p − 1
and thus lemma 6.15 tells us that

rp(XP
↑) = (X

P
↑)(m−1) ≅ ((rX)

P
↑)
(m−1)

= rp−1((rX)P↑) ∈ NP

and similarly
rp+i(XP

↑) = rp−1((ri+1X)
P
↑) ∈ NP .

We can use proposition 6.16 to give a better bound for the global dimension we
calculated in corollary 6.14. For instance we know that there are p modules inMCp .
Since Cp is the only isomorphism class of index p subgroups of Cp×Cp we can have at
most p2 radical length–dimension pairs in the classMCp×Cp and therefore p2 bounds
the global dimension of k[Cp × Cp]. This argument leads to the following corollary.

Corollary 6.17. If P = Cp ×⋯ × Cp is an elementary abelian p-group and

M = ⊕
X∈MP

X

then
gl dimEndkP(M) ≤ ∣P∣.

We may now use theorem 6.6 and separable equivalence to bound the global di-
mension of any group with elementary abelian Sylow p-subgroup. The proof of this
is a direct consequence of corollary 6.7 and the discussion that follows it.

Theorem 6.18:

If G is a group with elementary abelian Sylow p-subgroup P, and k is an alge-
braically closed field of characteristic p then

repdim kG ≤ ∣P∣.
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We are able to perform explicit calculations to find the global dimension of
EndkP(M) for some of the small p-groups (see section 6.4) and these show that the
bound calculated here is not sharp.

6.3 Grading and filtration

In the last section we defined a class ofmodules for elementary abelian groups. Notice
however that the definition of MP makes sense for any p-group P and if the global
dimension for the endomorphism ring is finite we can still use theorem 6.6 to bound
the representation dimension of group algebras with P as a Sylow p-subgroup.

There is an equivalent definition ofMP for elementary abelian groups that uses
the ideas of graded and filtered algebras. Again this definition can extend to general
abelian groups however the two definitions are no longer equivalent at this level of
generality. Having both definitions at our disposal will be useful for the calculations
in section 6.4 and so we now devote some attention to graded and filtered algebras.

Definition 6.19 (Graded algebra). Let A be a k-algebra. We say that A is a graded
algebra (orN-graded) if there is a vector space decomposition of A

A =⊕
n∈N

An = A0 ⊕ A1 ⊕ A2 ⊕⋯

such that for any i , j ∈N
A iA j ⊆ A i+ j .

If x ∈ A i then we say x is homogeneous of degree i and write ∣x∣ = i.

Definition 6.20 (Graded module). Let A =⊕i A i be a graded algebra. An A-module
is called a graded module if there is a vector space decomposition ofM

M =⊕
n∈N

Mn = M0 ⊕M1 ⊕M2 ⊕⋯

such that for any i , j ∈N
M iA j ⊆ M i+ j .

A homomorphism f ∶M → N between graded modules is called a graded homo-
morphism if for all i ∈N we have

f (M i) ⊆ N i
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Definition 6.21 (Filtered algebra). Let A be a k-algebra. We say that A is a filtered
algebra if there is a sequence of vector spaces

A = A0 ⊇ A1 ⊇ A2 ⊇ ⋯

such that for any i , j ∈N
A iA j ⊆ A i+ j .

Given a module M for a filtered algebra A, we automatically have a filtration on
M given by

M = M0 ⊇ M1 ⊇ M2 ⊇ . . .

≅ ≅
MA1 MA2

and so we don’t need a separate definition for a filtered module in this instance.
Notice that if A =⊕A i is a graded algebra then we can define a filtered algebra B

from the grading via
B i =⊕

j≥i
A j

We will fix a standard filtration on an abelian p-group P. Let P be given by the
product of cyclic groups

P = Cpr1 × Cpr2 × . . . × Cprn

where дi is a generator for the i-th cyclic group, so that we have an isomorphism

k[x1 , x2 , . . ., xn]
(x pr1 , x pr2 , . . ., x prn )

∼Ð→ kP

x i ↦ дi − 1

We can impose a grading on the polynomial ring by selecting degrees for each of
the x i and this induces a grading on kP. If pN is the exponent of P then we set

∣x i ∣ =
pN

o(дi)

where o(д) represents the order of the group element д. Thus if дi has maximal order
in the group then (дi − 1) is homogeneous of degree 1.

Of course due to the remark above this grading induces a filtration on the group
algebra. The following proposition demonstrates that the filtration induced is inde-
pendent of the choice of generators used to define the grading.
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Proposition 6.22. Let P = Cpr1 × ⋅ ⋅ ⋅ × Cprn be an abelian p-group of exponent pN .

Let {д1 , . . . , дn} be a set of generators satisfying o(дi) = pr i .
Let {h1 , . . . , hn} be a second set of generators satisfying o(h i) = pr i .
Let A ≅ kP be the graded algebra with grading generated by ∣дi − 1∣ = pN−r i .
Let B ≅ kP be the graded algebra with grading generated by ∣h i − 1∣ = pN−r i .
In this setting the filtration on A equals that on B: that is for each i ∈N

A≥i =⊕
j≥i

A i =⊕
j≥i

B i = B≥i

Proof. Wemay assume that r i ≤ r i+1 and that

h i =
n
∏
j=1

дu i j
j

for some values u i j. Note that since the orders of дi and h i coincide wemust have that
pr j−r i divides u i j.

We wish to show that when i ∈ {1, 2, . . . , n} then (h i − 1) ∈ A≥prn−r i .
It is a simple exercise to show that

h i − 1 =
n
∏
j=1

дu i j
j = ∑

I⊆{1, . . . ,n}
I≠∅

∏
j∈I
(дu i j

j − 1)

thus we need only show that

дu i j
j − 1 ∈ A≥prn−r i

for all j. We can write

дu i j
j − 1 = (дj − 1)

u i j + u i j(дj − 1)u i j−1 + (u i j

2
)(дj − 1)u i j−2 + ⋅ ⋅ ⋅ + u i j(дj − 1).

If r j > r i then p divides all terms apart from the first and so

∣дu i j
j − 1∣ = u

i jprn−r j ≥ pr j−r i prn−r j ≥ prn−r i

as needed. On the other hand if r j ≤ r i then all terms in the sum are in

A≥prn−r j ⊆ A≥prn−r i .

As there is nothing to differentiate between A and B we can reverse the argument
to show the opposite inclusion to complete the result.
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Example. We demonstrate with an example that even though the filtrations are the
same the gradings need not be. Consider the group

C2 × C2 = ⟨д, h⟩

Wecan calculate one grading using the generators д and h, and a second grading using
the generators дh and h. The element дh − 1 is homogeneous of degree 1 using the
second grading but since

дh − 1 = (д − 1)(h − 1) + (д − 1) + (h − 1)

it is clearly not homogeneous using the first.

In the case that P = Cp × ⋅ ⋅ ⋅ × Cp is a rank n elementary abelian group generated
by {д1 , . . . , дn} then

kP≥m = ⟨
n
∏
i=1
(дi − 1)s i ∣ 0 ≤ s i < p,

n
∑
i=1

s i ≥ m⟩ = radm kP.

We can give an alternative to definition 6.8:

Definition 6.23 (MP). Let P be an elementary abelian p-group and k a field of char-
acteristic p. LetMP be the set of indecomposable kP-modules that is minimal with
respect to the following properties:

(a) kP ∈MP ;

(b) if X ∈MP , H is a subgroup of P and Z is an indecomposable summand of X↓
H

P
↑

then Z ∈MP ;

(c) if X ∈ MP , d is a positive integer and Z is an indecomposable summand of
X⧸X≥d then Z ∈MP .

We now have two alternative yet equivalent definitions of MP for elementary
abelian groups that generalise in different ways to general abelian p-groups. The first
of these definitions can also generalise to non-abelian p-groups.

When generalising to groups that are not elementary abelian we will use the nota-
tion RP for the class as described in definition 6.8 and FP for the class described in
definition 6.23.
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6.4 Calculations

In section 6.2we calculated an upper bound for the representation dimension of group
algebras for groups with elementary abelian Sylow p-subgroups. For some small p-
groups we can calculate directly the global dimension for certain generators and use
the theorems of that section to givemore precise bounds for the representation dimen-
sion.

We have an algebra A and a generator-cogeneratorMA and wish to calculate min-
imal projective resolutions for E = EndMA . In order to perform these calculations
we will use a correspondence between the projective modules for E and summands
ofMA . As additive categories we have an equivalence

proj E ∼←→ addMA

X ↦ X⊗
E
MA

HomA(M ,N) ↦ N

To see that these give an inverse equivalence wemust check that the compositions

XE ↦ HomA(M , X⊗
E
M) NA ↦ HomA(M ,N)⊗

E
M

are naturally isomorphic to the identity functors. If X = E then we have the isomor-
phism

HomA(M , E⊗M) ∼Ð→ HomA(M ,M)
[m ↦ ϕm ⊗ θ(m)] ↦ ϕm ○ θ

and via the additivity of the functors (and the fact that projectives are summands of
free modules) this gives the first natural isomorphism. Similarly we have an isomor-
phism

HomA(M ,M)⊗
E
M ∼Ð→ M

ϕ⊗m ↦ ϕ(M)

and via additivity this gives the natural isomorphism required for the second compo-
sition.

Let XE be an EndMA module and

⋯Ð→ Pn Ð→ ⋯Ð→ P1 Ð→ P0 Ð→ X Ð→ 0
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be a projective resolution of M. The correspondence detailed above then gives us a
complex of modules in addM

⋯Ð→ Mn Ð→ ⋯Ð→ M1 Ð→ M0

For any i > 0 we know that

0Ð→ Pi+1 Ð→ Pi Ð→ Pi−1 Ð→ 0

is exact and this is true if and only if

0Ð→ HomE(Q , Pi+1)Ð→ HomE(Q , Pi)Ð→ HomE(Q , Pi−1)Ð→ 0

is exact for all projective E-modules Q. This is then true if and only if

0Ð→ HomA(N ,M i+1)Ð→ HomA(N ,M i)Ð→ HomA(N ,M i−1)Ð→ 0

is exact for all modules N ∈ addM.
Given this argument the property of exactness of the projective resolution P∗ trans-

lates to the property that any A-module map from M to the kernel of M i → M i−1

factors throughM i+1 whenever i > 0.

M

M i+1 M i M i−1

∃ 0

Now if X is simple and the resolution is minimal so that P0 → X is a projective
cover, then exactness at P0 means that P1 maps onto the radical of P0. This is true
if and only if for every non-split map from an indecomposable projective E-module
factors through P1. Again this can be transferred through the correspondence: we
have thatM0 is an indecomposable summand ofM and every non-split map from an
indecomposable summand ofM factors through the moduleM1.

In order to calculate the minimal projective resolutions of simple EndMA mod-
ules we may begin withM0, the corresponding indecomposable summand ofM. We
then calculate the minimal object M1 of addM for which any non-split map from M
to M0 factors through M1. Once we have calculated the map M i → M i−1 we then
calculate M i+1 as the minimal object of addM for which any map from M to the ker-
nel of M i → M i−1 factors through M i+1. In this way we may calculate the length of
projective resolutions.
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Using the Magma software we are able to use this approach to calculate the pro-
jective resolutions for some low order abelian p-groups. The code used can be found
in appendix A and for the abelian groups the resolutions themselves can be found in
appendix B. For the non-abelian groups we use the GAP notation G i

o to identify the
groups.

By definition the setsRP andFP are closed under the (res-ind) property. In order
to bound the representation dimension of any group G with P as a Sylow p-subgroup
we must also check that the set RP or FP is closed under the (isom) property. This
again can be checked using Magma and we find that this property holds for all the
groups in the tables below except for G3

16, G4
16 and G11

16. See the comments regarding
G3

16 and G11
16 below.

Abelian 2-groups

P C2 C4 C2 × C2 C8 C4 × C2 C2 × C2 × C2

repdimG ≤ 2 2 3 2 5 6

P C16 C8 × C2 C4 × C4 C4 × C2 × C2 C2 × C2 × C2 × C2

repdimG ≤ 2 5 6 8 8

Abelian 3-groups

P C3 C9 C3 × C3

repdimG ≤ 2 2 5

Non-abelian 2-groups

P D4 = G3
8 Q8 = G4

8

repdimG ≤ 4 5

P (C4 × C2)⋊ C2 = G3
16 C4 ⋊ C4 = G4

16 C8 ⋊ C2 = G6
16

repdimG ≤ ? ? 10

P D8 = G7
16 QD16 = G8

16 Q16 = G9
16 D4 × C2 = G11

16

repdimG ≤ 4 5 5 ?
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P Q8 × C2 = G12
16 (C4 × C2)⋊ C2 = G13

16

repdimG ≤ 7 7

Notice that for the groups G3
16 and G11

16 we have not calculated a bound. In these
cases the class of modulesRG appears to be infinite. The groupG3

16 can be interpreted
as the subgroup of S8 generated by the permutations д = (1, 2, 3, 4)(5, 6, 7, 8) and
h = (1, 5)(3, 7).RG contains amodule that on restriction to the subgroupH = ⟨д2 , h⟩
can be represented as

X1 =
● ●

●

where the dotted arrow represents the action of д2 − 1 and the solid arrow represents
the action of h − 1. Now if we induce to G, take a quotient by the cube of the radical
and restrict to the subgroup L = ⟨дhдh, h⟩ we obtain the module

X2 =
● ● ●

● ●

as a summand of
X1

G
↑

rad3 X1
G
↑

××Ö
L
,where the dashed arrow represents the action of дhдh−1.

Continuing in this manner we get

X3 =
● ● ● ●

● ● ●

as a summand of
X2

G
↑

rad3 X2
G
↑

××Ö
H
and through Magma calculations we can see that the

pattern continues at least until the module X40.





A Magma code

Included in this appendix is the code used for the calculations in chapter 6. We will
give an example of how to calculate a projective resolution as an illustration of how to
use these functions.

We will begin with the group G = C4 × C2 and calculate the class of modules FG .
We will then calculate the resolution for the projective module corresponding to the
regular kG-module in FG .

Example.

G := AbelianPGroup (2, [2 ,1]); G;
Permutation group G acting on a set of cardinality 6
Order = 8 = 2^3

(1, 2, 3, 4)
(5, 6)

M := GetM_filt (G); M;
[

GModule of dimension 1 over GF(2),
GModule of dimension 2 over GF(2),
GModule of dimension 2 over GF(2),
GModule of dimension 2 over GF(2),
GModule of dimension 3 over GF(2),
GModule of dimension 3 over GF(2),
GModule of dimension 3 over GF(2),
GModule of dimension 4 over GF(2),
GModule of dimension 4 over GF(2),
GModule of dimension 4 over GF(2),
GModule of dimension 4 over GF(2),
GModule of dimension 5 over GF(2),
GModule of dimension 6 over GF(2),
GModule of dimension 6 over GF(2),
GModule of dimension 6 over GF(2),
GModule of dimension 7 over GF(2),
GModule of dimension 8 over GF (2)

]

f := MinimalResolution (M[17] , M); ShowResolution (f, M);

95
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[ 1 2 5 6 8 9 10 11 12 13 14 15 16 17]
[ 1 2 3 3 4 4 4 4 5 6 6 6 7 8]
[ 0 0 0 0 0 0 0 0 0 0 0 0 0 1]
[ 0 0 0 0 1 1 0 0 0 0 1 1 0 0]
[ 0 0 1 1 0 0 1 0 0 1 0 0 1 0]
[ 0 1 0 0 0 0 0 1 1 0 0 0 0 0]
[ 1 0 0 0 0 0 0 0 0 0 0 0 0 0]

The final output is a table giving the number of copies of eachFG module in each
term of the projective resolution. The first row of the table refers to the index of the
module. The second row indicates the dimension of the summand. The third and
successive rows detail the decomposition of each term in the resolution.

Functions

AbelianPGroup := function (p, orderseq );
if not Type( orderseq ) eq SeqEnum then

orderseq := [ orderseq ];
end if;
error if not IsPrime (p), Sprintf ("%o is not prime .",p);
if # orderseq eq 0 then

return CyclicGroup (1);
end if;
error if Type( orderseq [1]) ne RngIntElt ,

" orderseq must contain Integers ";
return [ DirectProduct ( [ CyclicGroup (p^i) :

i in Sort(orderseq ,func <x,y|y-x>) ])][1];
end function ;

AppendSummandsIfNotIso := procedure (~M, N);
if IsZero (N) then return ; end if;
for Summand in IndecomposableSummands (N) do

add := true;
for X in M do

if IsIsomorphic (Summand , X) then
add := false;
break X;

end if;
end for;
if add then

Append (~M, Summand );
end if;

end for;
end procedure ;

IdxSeq := function ( maxvals );
idxseq := [];
idx := [ 1 : i in maxvals ];
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idx [1] := 0;
repeat

i := 1;
while idx[i] eq maxvals [i] do

i := i + 1;
end while;
for j in [1..i -1] do

idx[j] := 1;
end for;
idx[i] := idx[i] + 1;
Append (~ idxseq , idx );

until idx eq maxvals ;
return [ [ j-1 : j in i ] : i in idxseq ];

end function ;

Head := function (X);
RL ,V := RadicalLayers (X);
return [ X!V[i] : i in [1.. RL[1]-RL [2]] ];

end function ;

GroupMonomial := function (N, degs );
G := Group(N);
error if #degs ne # Generators (G),

" Length of sequence invalid .";
m := Head(N);
for i in [1..# degs] do

for j in [1.. degs[i]] do
m := [ x*G.i - x : x in m ];

end for;
end for;
return m;

end function ;

FilteredLayers := function (N);
G := Group(N);
gens := [ G.i : i in [1..# Generators (G)] ];
maxvals := [ Order(g) : g in gens ];
degrees := [ Max( maxvals )/x : x in maxvals ];
m := 0;
idxseq := IdxSeq ( maxvals );
FL := [];
repeat

mons := [ mon : mon in GroupMonomial (N,idx),
idx in idxseq | &+[ idx[i]* degrees [i] :

i in [1..# degrees ] ] ge m ];
J := sub <N | mons >;
Append (~FL , Dimension (J));
m := m + 1;

until IsZero (J);
return FL;

end function ;
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AppendSummandsOfFiltQuotients := procedure (~M, N);
G := Group(N);
if # Generators (G) eq 0 then

return ;
end if;
gens := [ G.i : i in [1..# Generators (G)] ];
maxvals := [ Order(g) : g in gens ];
degrees := [ Max( maxvals )/x : x in maxvals ];
m := 1;
idxseq := IdxSeq ( maxvals );
repeat

mons := [ mon : mon in GroupMonomial (N,idx),
idx in idxseq | &+[ idx[i]* degrees [i] :

i in [1..# degrees ] ] ge m ];
J := sub <N | mons >;
AppendSummandsIfNotIso (~M, quo <N|J >);
m := m + 1;

until IsZero (J);
end procedure ;

AppendSummandsOfRadQuotients := procedure (~M, N);
J := JacobsonRadical (N);
while not IsZero (J) do

AppendSummandsIfNotIso (~M, quo <N | J >);
J := JacobsonRadical (J);

end while;
AppendSummandsIfNotIso (~M, N);

end procedure ;

CloseUnderResInd := procedure (~M);
G := Group(M[1]);
repeat

numM := #M;
for rec in Subgroups (G) do

H := rec ‘ subgroup ;
for k in [1.. numM] do

N := M[k];
for R in IndecomposableSummands (

Restriction (N, H)) do
for RI in IndecomposableSummands (

Induction (R, G)) do
AppendSummandsIfNotIso (~M, RI);

end for;
end for;

end for;
end for;

until numM eq #M;
end procedure ;

CloseUnderFiltQuotients := procedure (~M);
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repeat
numM := #M;
for N in M do

AppendSummandsOfFiltQuotients (~M, N);
end for;

until numM eq #M;
end procedure ;

CloseUnderRadQuotients := procedure (~M);
repeat

numM := #M;
for N in M do

AppendSummandsOfRadQuotients (~M, N);
end for;

until numM eq #M;
end procedure ;

IsGrpAutMod := function (X,Y);
if Group(X) ne Group(Y) then

return false;
end if;
if Dimension (X) ne Dimension (Y) then

return false;
end if;
if RadicalLayers (X) ne RadicalLayers (Y) then

return false;
end if;
G := Group(X);
if IsIsomorphic (X,Y) then return true ,

[ G.i : i in [1..# Generators (G) ] ];
end if;
auts := [ [ g : g in G | Order(g) eq Order(G.i) ] :

i in [1..# Generators (G)] ];
idx := [ 1 : i in auts ];
maxidx := [ #aut : aut in auts ];
idx [1] := 0;
repeat

i := 1;
while idx[i] eq maxidx [i] do

i := i + 1;
end while;
for j in [1..i -1] do

idx[j] := 1;
end for;
idx[i] := idx[i]+1;
if sub <G| [ auts[i][ idx[i]] :

i in [1..# idx] ]> eq G then
tAct := [

Matrix ([ X.i*auts[j][ idx[j]]
: i in [1.. Dimension (X)] ]) : j in [1..# idx] ];

tX := GModule (G, tAct );
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if IsIsomorphic (tX , Y) then
return true , [ auts[i][ idx[i]] : i in [1..# idx] ];

end if;
end if;

until maxidx eq idx;
return false;

end function ;

CollectAutMods := procedure (~M);
autmods := [];
idx := { 1..#M };
while #idx gt 0 do

i := Random (idx );
Append (~ autmods , []);
for j in [1..#M] do

if IsGrpAutMod (M[i], M[j]) then
Append (~ autmods [# autmods ], j);
Exclude (~idx , j);

end if;
end for;

end while;
Sort (~ autmods );
revautmods := [];
for i in [1..# autmods ] do

for j in autmods [i] do
revautmods [j] := i*#M*2+j;

end for;
end for;
ParallelSort (~ revautmods , ~M);

end procedure ;

SortM := procedure (~M);
Sort (~M, func <x,y| Dimension (x)- Dimension (y)>);
CollectAutMods (~M);

end procedure ;

GetM_filt := function (G);
error if Type(G) ne GrpPerm ,

Sprintf (" Expected GrpPerm , given %o",Type(G));
error if not IsAbelian (G),

Sprintf ("%o is not abelian .", G);
p := PrimeDivisors (Order(G));
error if #p gt 1,

Sprintf ("%o is not a p-group .", G);

if #p lt 1 then
p := 2;

else
p := p[1];

end if;
RM := PermutationModule (G, sub <G|>, GF(p));
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M := [ ];
AppendSummandsIfNotIso (~M, RM);
repeat

numM := #M;
CloseUnderResInd (~M);
CloseUnderFiltQuotients (~M);

until numM eq #M;

SortM (~M);

return M;
end function ;

GetM_rad := function (G);
error if Type(G) ne GrpPerm ,

Sprintf (" Expected GrpPerm , given %o",Type(G));
p := PrimeDivisors (Order(G));
error if #p gt 1,

Sprintf ("%o is not a p-group .", G);

if #p lt 1 then
p := 2;

else
p := p[1];

end if;
RM := PermutationModule (G, sub <G|>, GF(p));

M := [ ];
AppendSummandsIfNotIso (~M, RM);
repeat

numM := #M;
CloseUnderResInd (~M);
CloseUnderRadQuotients (~M);

until numM eq #M;

SortM (~M);

return M;
end function ;

SumMaps := function (m);
D := [ Domain (x) : x in m ];
CD := Codomain ( m[1] );
error if not &and[ IsIsomorphic (CD , Codomain (x))

: x in m ], " Codomains do not match .";
D,incl ,proj := DirectSum (D);
f := MapToMatrix (proj [1])*m[1];
for i in [2..#m] do

f := f + MapToMatrix (proj[i])*m[i];
end for;
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return f,incl ,proj;
end function ;

QtoNFactorsThroughPsToN := function (QtoN , PsToN );
Q := Domain (QtoN );
N := Codomain (QtoN );
FM := [];
for i in [1..# PsToN] do

PtoN := PsToN[i];
P := Domain (PtoN );
B := Basis(GHom(Q, P));
for v in B do

Append (~FM , v*PtoN );
end for;

end for;
SubGHom := sub < KMatrixSpace (Field(Q),

Dimension (Q), Dimension (N)) | FM >;
return QtoN in SubGHom ;

end function ;

RemoveFactoringMaps := function (d);
for i in Reverse ([1..# d]) do

testD := Remove (d, i);
m := d[i];
if QtoNFactorsThroughPsToN (m, testD) then

Remove (~d, i);
end if;

end for;
return d;

end function ;

Cover := function ( N, canBeSplit , M );
d := [**];
maxdim := 0;
for i in [1..#M] do

if Dimension (M[i]) gt maxdim then
maxdim := Dimension (M[i]);

end if;
end for;
for coRank in [0.. maxdim -1] do

for dimOfMod in Reverse ([ coRank +1.. maxdim ]) do
appended := false;
for i in [1..#M] do

X := M[i];
if Dimension (X) eq dimOfMod then

if canBeSplit or (not IsIsomorphic (X, N)) then
B := Basis(GHom(X,N));
for m in B do

if Rank(m) eq dimOfMod - coRank then
if #d eq 0 then

Append (~d, m);
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else
if not QtoNFactorsThroughPsToN (m, d) then

Append (~d, m);
appended := true;

end if;
end if;

end if;
end for;

end if;
end if;

end for;
if appended then

d := RemoveFactoringMaps (d);
end if;

end for;
end for;
return d;

end function ;

MinimalResolution := function (N, M);
f := [**];
K := [**];

n := 0;
d := [* GHom(N, N)!0 *];
while true do

n := n + 1;
f[n] := SumMaps (d);

K[n] := Kernel (f[n]);

if ( IsZero (K[n])) then
print " Resolution complete ";
return f;

end if;

print " Calculating cover [",n ,"]...";
d := Cover (K[n], n gt 1, M);

end while;
end function ;

ShowResolution := function (f, M);
Res := [];
res := [ 0 : i in [1..#M] ];
nonz := {};
for m in f do

NumSeq := [ 0 : i in [1..#M] ];
for X in DirectSumDecomposition ( Domain (m)) do

for i in [1..#M] do
if IsIsomorphic (X, M[i]) then

NumSeq [i] := NumSeq [i] + 1;
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Include (~nonz , i);
break i;

end if;
end for;

end for;
Append (~Res , NumSeq );

end for;
nonz := Sort( SetToSequence (nonz ));
T := ZeroMatrix ( Integers (), #Res +2, #nonz );
for j in [1..# nonz] do

T[1][j] := nonz[j];
T[2][j] := Dimension (M[nonz[j]]);
for i in [1..# Res] do

T[i+2][j] := Res[i][ nonz[j]];
end for;

end for;
return T;

end function ;

IsomorphismClassesOfSubgroups := function (G);
ICs := [];
for rec in Subgroups (G) do

H := rec ‘ subgroup ;
appended := false;
for i in [1..# ICs] do

if IsIsomorphic (H, ICs[i][1]) then
Append (~ ICs[i], H);
appended := true;
break i;

end if;
end for;
if not appended then

Append (~ICs , [ H ] );
end if;

end for;
return ICs;

end function ;

RestrictionOfM := function (M, H);
Mres := [];
for N in M do

AppendSummandsIfNotIso (~Mres , Restriction (N, H));
end for;
return Mres;

end function ;

ModuleThroughIsomorphism := function (X, phi );
H := Domain (phi );
L := Codomain (phi );
error if Group(X) ne L,

"X is not a module for the codomain of phi .";
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phiX := GModule (H,
[ Matrix ([ X.i*phi(H.j) : i in [1.. Dimension (X)] ])

: j in [1..# Generators (H)] ] );
return phiX;

end function ;

RestrictionToSubgroupsAreIsomorphic := function (M, H, L);
resH := RestrictionOfM (M, H);
resL := RestrictionOfM (M, L);
isI , phi := IsIsomorphic (H, L);
if not isI then

return false;
end if;
for N in resL do

phiN := ModuleThroughIsomorphism (N, phi );
if not &or[ IsIsomorphic (phiN , X) : X in resH ] then

return false;
end if;

end for;
return true;

end function ;

RestrictionToIsomorphicSubgroupsIsValid := function (M);
G := Group(M [1]);
ICs := IsomorphismClassesOfSubgroups (G);
for IC in ICs do

if #IC gt 1 then
for Pair in CartesianProduct (IC ,IC) do

H := Pair [1];
L := Pair [2];
if H ne L then

if not RestrictionToSubgroupsAreIsomorphic (M, H, L) then
return false;

end if;
end if;

end for;
end if;

end for;
return true;

end function ;





B Calculated resolutions

We represent modules by diagrams with a vertex for each basis element of the module
and edges representing the action of the algebra.

B.1 C2

If C2 = ⟨д⟩ then the module is the regular module and the edge represents the
action of д − 1.

0→ → →

0→ →

B.2 C4

If C4 = ⟨д⟩ then each edge represents the action of д − 1.

0→ → →

0→ → ⊕ →

0→ → ⊕ →

0→ →

107
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B.3 C2 × C2

If C2 × C2 = ⟨д, h⟩ then the module is the regular module. Each edge
represents the action of д − 1 and each edge represents the action of h − 1. The
notation shows that д and h act in the same way.

0→ → 2 → ⊕ ⊕ →

0→ → →

0→ → →

0→ → →

0→ → ⊕ ⊕ → 2 ⊕ →

0→ → ⊕ ⊕ →

B.4 C8

0→ → →

0→ → ⊕ →

0→ → ⊕ →

0→ → ⊕ →

0→ → ⊕ →
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0→ → ⊕ →

0→ → ⊕ →

0→ →

B.5 C4 × C2

AsC4×C2 is a product of non-isomorphic cyclic groups there is a choice ofwhichmod-
ule to use for the calculation of a bound for representation dimension. Here we use
the classFG , which is based on the filtered algebra approach. The diagrams are drawn
compatible with the degrees in this filtration. If C4×C2 = ⟨д, h⟩with д4 = h2 = 1 then

represents the action of д− 1 and represents the action of h− 1. In some cases
the diagrams are denoted with a group automorphism, meaning that the diagram is
drawn for a different basis of kG. For example the the notation

д ↦ дh

represents the

2-dimensional module where the action of h is as per the diagram, whilst the action
of д on the module is the action of дh on the diagram.

0→ → 2 → ⊕ ⊕
д ↦ дh

→

0→ → 2 → ⊕
h ↦ д2h

⊕ →

0→ → →
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0→ → →
д ↦ дh

0→ → ⊕ → ⊕ ⊕ → ⊕ →

0→ → ⊕ → ⊕
h ↦ д2h

⊕ →

h ↦ д2h

⊕ →

h ↦ д2h

0→ → 2 → ⊕ ⊕
д ↦ дh

⊕ → ⊕ ⊕ →

0→ → ⊕ →
h ↦ д2h

⊕ →

h ↦ д2h

0→ → ⊕ → ⊕ →

0→ → 2 → ⊕
д ↦ дh

⊕ →

0→ → ⊕ → ⊕ ⊕ →

0→ 2 → 2 ⊕ ⊕ 2 →

⊕ ⊕ ⊕

д ↦ дh

→

0→ → ⊕ → ⊕ ⊕
h ↦ д2h

⊕ →

⊕ ⊕ →
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0→ → ⊕ →

0→ → ⊕ →

д ↦ дh

0→ → ⊕ ⊕ →

⊕ ⊕
h ↦ д2h

⊕ ⊕ ⊕ →

⊕

h ↦ д2h

⊕ ⊕ ⊕ ⊕

д ↦ дh

→

⊕
h ↦ д2h

⊕ ⊕ →

0→ → ⊕ ⊕ →

⊕
h ↦ д2h

⊕ ⊕ ⊕ →

h ↦ д2h

⊕ ⊕ ⊕

д ↦ дh

→

B.6 C2 × C2 × C2

If C2 × C2 × C2 = ⟨д, h, i⟩ then represents the action of д − 1; represents the
action of h − 1; and represents the action of i − 1. Where there are modules that are
equivalent up to a group automorphism we only include a resolution for one of these.

0→ 3 → 8 →
д ↦ дhi
i ↦ д

2⊕
д ↦ hi
i ↦ д

2⊕
д ↦ h
h ↦ дi
i ↦ д

2⊕ 2⊕
д ↦ дi
i ↦ д

2⊕ 2⊕ 2 →
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⊕
д ↦ hi
h ↦ д

⊕
д ↦ h
h ↦ дi

⊕
д ↦ hi
h ↦ дi

⊕ ⊕
д ↦ hi
h ↦ i
i ↦ д

⊕ →

0→ → 2 →
д ↦ hi
i ↦ д

⊕ ⊕ →

0→ → 2 ⊕ → ⊕
д ↦ hi
h ↦ i
i ↦ д

⊕ ⊕ ⊕ 2 →

⊕ ⊕ ⊕
д ↦ hi
h ↦ i
i ↦ д

→ ⊕ →

0→ → 2 ⊕ → ⊕
д ↦ hi
h ↦ i
i ↦ д

⊕ ⊕ ⊕ 2 →

⊕ ⊕
д ↦ hi
h ↦ i
i ↦ д

→

0→ ⊕ 3 →
д ↦ дhi
i ↦ д

2⊕
д ↦ hi
i ↦ д

2⊕
д ↦ h
h ↦ дi
i ↦ д

2⊕ 2⊕
д ↦ дi
i ↦ д

2⊕ 2⊕ 2 →

2 ⊕
д ↦ hi
h ↦ д

2 ⊕
д ↦ h
h ↦ дi

2 ⊕
д ↦ hi
h ↦ дi

2 ⊕ 2 ⊕
д ↦ hi
h ↦ i
i ↦ д

2 ⊕ 2 ⊕ 6 →

3 ⊕ ⊕
д ↦ h
h ↦ дi

⊕ ⊕
д ↦ hi
h ↦ д

⊕ ⊕
д ↦ hi
h ↦ дi

⊕
д ↦ hi
h ↦ i
i ↦ д

→

0→ →
д ↦ hi
i ↦ д

⊕ ⊕ → 2 ⊕ →

0→ 3 → 6 →
д ↦ дhi
i ↦ д

⊕
д ↦ hi
i ↦ д

⊕
д ↦ h
h ↦ дi
i ↦ д

⊕ ⊕
д ↦ дi
i ↦ д

⊕ ⊕ ⊕

3 → ⊕ ⊕
д ↦ h
h ↦ дi

⊕ ⊕
д ↦ hi
h ↦ д

⊕ ⊕
д ↦ hi
h ↦ дi

⊕
д ↦ hi
h ↦ i
i ↦ д

→
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⊕ ⊕
д ↦ дi
i ↦ д

⊕ ⊕
д ↦ hi
i ↦ д

⊕
д ↦ дhi
i ↦ д

⊕
д ↦ h
h ↦ дi
i ↦ д

⊕ 4 →

д ↦ дhi
i ↦ д

⊕
д ↦ hi
i ↦ д

⊕
д ↦ h
h ↦ дi
i ↦ д

⊕ ⊕
д ↦ дi
i ↦ д

⊕ ⊕ ⊕ →

0→ 3 → 6 →
д ↦ дhi
i ↦ д

⊕
д ↦ hi
i ↦ д

⊕
д ↦ h
h ↦ дi
i ↦ д

⊕ ⊕
д ↦ дi
i ↦ д

⊕ ⊕ ⊕

3 → ⊕
д ↦ h
h ↦ дi

⊕ ⊕
д ↦ hi
h ↦ д

⊕ ⊕
д ↦ hi
h ↦ дi

⊕
д ↦ hi
h ↦ i
i ↦ д

→

⊕ ⊕
д ↦ дi
i ↦ д

⊕ ⊕
д ↦ hi
i ↦ д

⊕
д ↦ дhi
i ↦ д

⊕
д ↦ h
h ↦ дi
i ↦ д

→

B.7 C8 × C2

We use FG and represent the vertices in the correct layer according to the standard
filtration. If C8 × C2 = ⟨д, h⟩ with д8 = h2 = 1 then represents the action of д − 1

and represents the action of h − 1.

0→ → 2 → ⊕

д ↦ дh

⊕ →

0→ → 2 → ⊕ ⊕ →

0→ → →
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0→ → ⊕ →

0→ → 2 → ⊕

д ↦ дh

⊕ ⊕ → ⊕ ⊕ →

0→ → ⊕ → ⊕ ⊕ → ⊕ →

0→ → 2 →

h ↦ д4h

⊕ ⊕ →

0→ → ⊕ ⊕ → ⊕ ⊕ →

0→ → ⊕ → ⊕ →

0→ → 2 →

д ↦ дh

⊕ ⊕ →

0→ → ⊕ → ⊕ ⊕ →

⊕ →

0→ → ⊕ ⊕ →
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⊕ ⊕ →

0→ 2 → ⊕ 2 ⊕ 2 →

⊕

д ↦ дh

⊕ ⊕ →

0→ → ⊕ ⊕ → ⊕ ⊕ ⊕

→ ⊕ ⊕ →

0→ → ⊕ → ⊕ ⊕ →

0→ → ⊕ →

0→ → ⊕ → ⊕ ⊕ ⊕ →

⊕ ⊕ →
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0→ → ⊕ ⊕ →

⊕ ⊕ ⊕ →

⊕ ⊕ →

0→ → ⊕ ⊕ → ⊕ ⊕ ⊕ ⊕ 2 →

⊕ ⊕

д ↦ дh

⊕ ⊕ ⊕ →

⊕ ⊕ ⊕ →

0→ → ⊕ ⊕ →

⊕ ⊕ →

0→ → ⊕ → ⊕ →
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0→ → ⊕ ⊕ →

⊕ ⊕ →

0→ → ⊕ ⊕ → ⊕ ⊕ ⊕ 2 →

⊕

д ↦ дh

⊕ ⊕ →

0→ → ⊕ ⊕ → ⊕ ⊕ →

0→ 2 → ⊕ 2 ⊕ 2 →
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⊕ ⊕

д ↦ дh

⊕ →

0→ → ⊕ ⊕ →

⊕ ⊕ →

0→ ⊕ →

⊕ ⊕ ⊕ 2 →

⊕ ⊕ ⊕ →

0→ → ⊕ →

0→ → ⊕ ⊕ →
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⊕ ⊕ →

0→ → ⊕ ⊕ →

⊕ ⊕ →

0→ → ⊕ 2 →

⊕

д ↦ дh

⊕ ⊕ →

⊕ ⊕ →

0→ → ⊕ ⊕ →
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⊕ ⊕ ⊕ →

⊕ ⊕ →

0→ → ⊕ ⊕ →

⊕ ⊕ →

0→ → ⊕ → ⊕

h ↦ д4h

⊕ ⊕ →

⊕ ⊕ →

0→ → ⊕ ⊕ →
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⊕ ⊕ →

0→ → ⊕ 2 →

д ↦ дh

⊕ ⊕ →

0→ → ⊕ → ⊕

h ↦ д4h

⊕ ⊕ →

⊕

h ↦ д4h

⊕ ⊕ ⊕ →

h ↦ д4h

⊕ ⊕ ⊕ →

0→ 2 → ⊕ 2 ⊕ 2 →
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⊕ ⊕ ⊕

д ↦ дh

→

0→ → ⊕ ⊕ ⊕ → ⊕

h ↦ д4h

⊕

⊕ ⊕ ⊕ ⊕ →

h ↦ д4h

⊕ ⊕

h ↦ д4h

⊕ ⊕ ⊕

⊕ →

h ↦ д4h

⊕ ⊕

⊕ →
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0→ → ⊕ →

0→ ⊕ → ⊕ ⊕ ⊕ ⊕

⊕ ⊕ → ⊕

h ↦ д4h

⊕

⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ →

h ↦ д4h

⊕ ⊕ ⊕ ⊕

h ↦ д4h

⊕

⊕ ⊕ ⊕ ⊕
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д ↦ дh

→

h ↦ д4h

⊕ ⊕ ⊕

⊕ →

0→ ⊕ → ⊕ ⊕ ⊕ ⊕

⊕ →

h ↦ д4h

⊕ ⊕

⊕ ⊕ ⊕ ⊕

⊕ → ⊕

h ↦ д4h

⊕
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⊕ ⊕

д ↦ дh

→

B.8 C4 × C4

IfC4×C4 = ⟨д, h⟩ then represents the action of д−1 and represents the action
of h − 1. In many cases several modules that are equivalent up to automorphism of
the group appear in the resolutions, for succinctness we will use the notation n ∼ M
to mean the direct sum of n non-isomorphic modules that are equivalent toM up to
group automorphism.

0→ → 2 → 3 ∼ →

0→ 2 → 2 ⊕ 2 → ⊕ 2 ⊕ 2 → 2 ∼ ⊕ →

0→ → ⊕ → ⊕ ⊕ → ⊕ ⊕ →

⊕ ⊕ →

0→ → 3 ∼ → 2 ⊕ →

0→ → ⊕ → 2 ⊕ → ⊕ →

0→ → 2 → 3 ∼ →

0→ 2 → 3⊕ → 3 ∼ ⊕ ⊕ ⊕ 2 → ⊕

2⊕3 ∼ → 2 ∼ ⊕ ⊕ →
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0→ → ⊕ → ⊕ ⊕ →

⊕ →

0→ → ⊕ → ⊕ 2 → 2 ∼ ⊕ ⊕ →

⊕ ⊕ →

0→ 3 → 4 ⊕ → ⊕ 3 ∼ ⊕ 3 ⊕ 2 →

2 ⊕ 3 ∼ →

0→ 3 → ⊕ 4 ⊕ →

⊕ 2 ⊕
д ↦ дh

⊕ ⊕ 3 ⊕ 2 →
д ↦ дh2

⊕ ⊕

2 ⊕ 2 ⊕ ⊕
д ↦ дh

⊕ ⊕ →

2 ⊕ ⊕

д ↦ дh2

⊕ 2 ⊕ ⊕
h ↦ дh

⊕ ⊕

→
д ↦ дh2

⊕ ⊕ ⊕ ⊕ →

0→ 3 → ⊕ 4 ⊕ →

⊕
д ↦ дh

⊕ 3 ⊕ 3 ⊕ 2 → ⊕
д ↦ h
h ↦ дh2

⊕

2 ⊕ ⊕
д ↦ дh

⊕ ⊕ →

д ↦ h
h ↦ дh2

⊕ ⊕
д ↦ дh
h ↦ д

⊕ ⊕ →
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0→ → ⊕ → ⊕ ⊕ →

0→ → ⊕ ⊕ →

⊕ ⊕ ⊕ →

⊕ ⊕ →

0→ → ⊕ 2 ⊕ →

2 ⊕ ⊕ ⊕ 2 →

⊕ 2 ∼ ⊕ →

0→ 2 → 3 → 3 ∼ ⊕ ⊕ → ⊕ 3 ∼ →

2 ⊕ →

0→ → ⊕ ⊕ →

⊕ ⊕ ⊕ ⊕ → ⊕

⊕ ⊕ ⊕ ⊕ →

⊕ ⊕ ⊕ →

0→ → ⊕ ⊕ →

⊕ ⊕ ⊕ →
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⊕ ⊕ →

0→ 3 → 3 ⊕ → 3 ∼ ⊕ ⊕ 3 ∼ →

3 ∼ ⊕ →

0→ → 2 ⊕ 3 → 3 ∼ ⊕ 3 ∼ 2 ⊕ 5 → ⊕

3 ⊕ 3 ∼ 2 ⊕ 3 ∼ ⊕ 3 ∼ ⊕ →

6 ∼ ⊕ ⊕ 3 ∼ ⊕ ⊕ 2 →

3 ∼ ⊕ 3 ∼ →

0→ ⊕ → ⊕ ⊕ ⊕ ⊕ →

⊕2 ∼ ⊕ ⊕ ⊕ ⊕ →

⊕ 2 ∼ ⊕ ⊕ 2 ∼ →

2 ∼ ⊕ ⊕ →

0→ ⊕ 7 → 3 ∼ ⊕3 ∼ 3⊕3 ∼ ⊕ 9 →

2 ⊕ 3 ⊕ 3 ⊕ 3 ∼ 3 ⊕ 3 ∼ ⊕

3 ∼ 2 ⊕ 3 ∼ ⊕ 6 → ⊕ 3 ∼ ⊕
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6 ∼ ⊕ 3 ∼ ⊕ 3 ∼ ⊕ 5 ⊕

6 ∼ ⊕ ⊕ 3 ∼ ⊕ →

3 ∼ ⊕ 3 ∼ 2 ⊕ 6 ∼ ⊕ 4 →

6 ∼ ⊕ →

0→ ⊕ 7 → 3 ∼ ⊕3 ∼ 3⊕3 ∼ ⊕ 9 →

3 ⊕ 3 ∼ 3 ⊕ 3 ∼ ⊕ 3 ∼ 2 ⊕

3 ∼ ⊕ 6 → 6 ∼ ⊕ 3 ∼ ⊕

6 ∼ ⊕ ⊕ 3 ∼ ⊕ →

6 ∼ →

B.9 C4 × C2 × C2

Here we use the class of modulesRG , which is closed under quotients by radical pow-
ers, in order to calculate a bound on the representation dimension. For C4×C2×C2 =
⟨д, h, i⟩ where д4 = h2 = i2, we let represent the action of д − 1; represent
the action of h − 1; and represent the action of i − 1. As in the previous example
we use the notation n ∼ M to represent the direct sum of n non-isomorphic modules
that are equivalent up to automorphism of the group.

0→ 3 → 8 → 3 ∼ 2 ⊕ 4 ∼ 2 → 6 ∼ ⊕ →
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0→ → 2 → ⊕ 2 ∼ →

0→ 4 → 4 ⊕ 8 → ⊕ 3 ∼ 4 ⊕ 8 →
4 ⊕ 2 ⊕ 6 ∼ 2 → 4 ∼ ⊕ 3 ∼ →

0→ → ⊕ 2 → ⊕ 3 ∼ ⊕ 2 → ⊕ 2 ⊕ 3 ∼ ⊕

2 → ⊕ 3 ∼ ⊕ 3 ∼ ⊕ 2 →

⊕ ⊕ 3 ∼ →

0→ → 2 ⊕ → 2 ∼ ⊕ ⊕ ⊕ 2 → ⊕ 2 ∼ ⊕ →

⊕ →

0→ → 2 ⊕ → 3 ∼ ⊕ ⊕ 2 → ⊕ 3 ∼ → ⊕ →

0→ 3 → ⊕ 2 ⊕ 3 → 2 ∼ ⊕ 3 ⊕ 2 ⊕ 2 →

2 ∼ ⊕ 2 ∼ ⊕ →

0→ → ⊕ 2 → ⊕ 3 ∼ ⊕ 2 →

⊕ 3 ∼ ⊕ 2 → ⊕ 3 ∼ →

0→ ⊕ 3 → 3 ∼ 2 ⊕ 4 ∼ 2 → 6 ∼ 2 ⊕ 2 ⊕ 6 →
3 ⊕ 6 ∼ ⊕ →

0→ → 2 ⊕ → 3 ∼ ⊕ ⊕ 2 → 3 ∼ →

0→ → 2 ⊕ → 2 ∼ ⊕ ⊕ ⊕ 2 →

⊕ ⊕2 ∼ ⊕ ⊕ 2 → 2⊕ ⊕ 2⊕

⊕ 2 ∼ → ⊕ 2 ∼ ⊕ ⊕ →
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0→ → ⊕ 2 ∼ → 2 ⊕ →

0→ → ⊕ → ⊕ ⊕ → ⊕ ⊕ →

⊕ ⊕ →

0→ → ⊕ →

0→ → ⊕ ⊕ → ⊕ ⊕ 2 ⊕ ⊕ →

2 ∼ ⊕ ⊕ ⊕ ⊕ 2 →

⊕ 2 ∼ ⊕ → ⊕ →

0→ 2 → ⊕ 3 ⊕ 2 → ⊕ 2 ∼ ⊕ 2 ⊕ 2 ⊕ 2 ⊕ ⊕
3 → ⊕ 2 ∼ ⊕ ⊕ ⊕ ⊕ 2 ⊕ 2 ∼ ⊕

2 ⊕ 2 ⊕ ⊕ ⊕ 2 →

2 ⊕ ⊕ 2 ⊕ 2 ∼ ⊕ ⊕ 2 ⊕ ⊕

⊕ ⊕ ⊕ 2 ∼ ⊕ 2 ∼ ⊕ 2 →

2 ∼ ⊕ ⊕ ⊕ 2 ∼ ⊕ 2⊕ 2 ∼ ⊕ ⊕

2 → ⊕ ⊕ 2 ∼ ⊕ →

0→ 7 → 12⊕ 3 → 6 ∼ ⊕3 ∼ 2⊕4 ∼ ⊕ 11⊕ 8 →

3 ⊕ ⊕ 6 ∼ 2 ⊕ 4 ∼ 2 ⊕ 3 ∼ 2 → 4 ⊕

4 ∼ ⊕ 6 ∼ ⊕ → 4 ∼ ⊕ ⊕ →

0→ → 3 ∼ ⊕ → 2 ⊕ 3 ∼ ⊕ ⊕ →
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3 ∼ ⊕ ⊕ → ⊕ →

0→ 2 → ⊕ 3⊕ 2 → 2 ∼ ⊕ 3⊕ 2⊕ 2⊕ ⊕ 3 →

2 ∼ ⊕ ⊕ 2 ⊕ 2 ∼ ⊕ 2 ⊕ 2 ⊕

⊕ ⊕ 2 → 3 ⊕ 2 ∼ ⊕ ⊕

⊕ 2 ∼ ⊕ 2 ∼ ⊕ 2 →

2 ∼ ⊕ 2 ∼ ⊕ →

0→ 4 → 3 ∼ ⊕ 6 ⊕ 3 →

6 ∼ ⊕ 3 ∼ 2 ⊕ ⊕ 8 ⊕ 8 →

2 ⊕ ⊕ 3 ∼ ⊕ ⊕ 6 ∼ ⊕ 4 ∼ 2 ⊕ 3 ∼ 2 →

3 ∼ ⊕ ⊕ 6 ∼ ⊕ →

0→ 3 → 3 ∼ 3 ⊕ 4 → 6 ⊕ 6 ∼ 2 ⊕ ⊕ 3 →

4 ∼ 2 ⊕ 3 ∼ ⊕ 3 ⊕ 4 →

2 ⊕ 4 ∼ ⊕ →

0→ 7 → 12⊕ 3 → 6 ∼ ⊕3 ∼ 2⊕4 ∼ ⊕ 11⊕ 8 →

⊕ 6 ∼ 2 ⊕ 4 ∼ 2 ⊕ 3 ∼ 2 →

4 ∼ ⊕ 6 ∼ ⊕ →

0→ → 3 ∼ ⊕ → 2⊕ ⊕ 3 ∼ ⊕ ⊕ →

2 ⊕ 3 ∼ ⊕ 3 ∼ ⊕ 2 ⊕ →
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2 ⊕ 2 ⊕ 3 ∼ ⊕ ⊕ ⊕ →

2 ⊕ ⊕ ⊕ →

0→ → ⊕ ⊕ → ⊕ ⊕ 2 ⊕ 2 →

⊕ 2 ∼ ⊕ →

0→ → 2 ⊕ → 3 ∼ ⊕ ⊕ 2 →

⊕ 3 ∼ →

0→ → ⊕ 2⊕ → 3 ∼ ⊕ ⊕ 2 →

⊕ ⊕ 3 ∼ → ⊕ ⊕ →

0→ → 2 ⊕ → ⊕ 2 ∼ ⊕ ⊕ ⊕ 2 →

⊕ 2 ⊕ ⊕ 2 ∼ ⊕ 2 ∼ ⊕ ⊕ 2 →

2 ∼ ⊕ ⊕ ⊕ 3 ⊕ ⊕ 2 ∼ 2 ⊕ 2 ⊕ ⊕

2 ∼ ⊕ → ⊕ ⊕ 2 ∼ ⊕ 4 ∼ ⊕ ⊕

2 ∼ ⊕ ⊕ ⊕ 2 → ⊕ ⊕2 ∼ ⊕

2 ∼ ⊕ → ⊕ ⊕ →

0→ → ⊕ 2 ⊕ →

3 ∼ ⊕ ⊕ 2 → ⊕ 3 ∼ →
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0→ → 3 ∼ ⊕ → 2 ⊕ 3 ∼ ⊕ ⊕ →

2 ⊕ 3 ∼ ⊕ ⊕ →

2 ⊕ ⊕ →

0→ → 2 ⊕ → ⊕ 2 ∼ ⊕ ⊕ ⊕ 2 →

2⊕ ⊕2 ∼ ⊕2 ∼ ⊕ ⊕ 2 → 2 ∼ ⊕ ⊕

3 ⊕ 2 ∼ 2 ⊕ 2 ⊕ ⊕ 2 ∼ ⊕ →

2 ∼ ⊕ 4 ∼ ⊕ ⊕ 2 ∼ ⊕ ⊕ 2 →

2 ⊕ 2 ∼ ⊕ →

0→ 3 → 3 ∼ 2 ⊕ 3 → 6 ∼ ⊕ 3 ⊕ 3 ∼ ⊕ ⊕ 9 →
3 ⊕ 3 ∼ ⊕ 6 ∼ ⊕ 6 ∼ ⊕ 3 ⊕ 4 ⊕

3 ∼ 2 ⊕ 3 → 2 ⊕ 3 ∼ 4 ⊕ 4 ⊕

6 ∼ 2 ⊕ ⊕ 4 ⊕ 6 ∼ ⊕ 4 ∼ 2 →

3 ∼ 2 ⊕ 12 ∼ ⊕ ⊕ 6 ∼ ⊕ 4 ⊕ 6 ∼ ⊕

6 → 6 ∼ ⊕ ⊕ 6 ∼ ⊕ →

0→ → ⊕ → ⊕ ⊕ 2 → 2 ∼ ⊕ ⊕ ⊕

⊕ → 2 ⊕ 2 ∼ ⊕ ⊕ 2 ∼ →

2 ∼ ⊕ ⊕ →

0→ 3 → 3 ⊕ 6 → 3 ∼ 3 ⊕ 6 ⊕ →
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3 ⊕ 3 ∼ ⊕ ⊕ 6 ∼ ⊕ ⊕ ⊕ 3 →

⊕ 3 ∼ ⊕ ⊕ 4 ∼ ⊕ 3 ∼ → 6 ∼ ⊕

⊕ 4 → ⊕ 6 ∼ ⊕ →

0→ 6 → 3⊕3 ∼ ⊕ 9 → 3⊕6 ∼ ⊕3 ∼ 3⊕ 6⊕ 13 →
3 ⊕ 3 ∼ ⊕ 6 ⊕ 6 ∼ 2 ⊕ 6 ∼ ⊕ 7 ⊕ 4 ⊕

6 ⊕ 3 ∼ ⊕ 10 → 3 ∼ 3 ⊕ 3 ∼ 3 ⊕ 3 ⊕

⊕ 6 ∼ ⊕ 6 ∼ ⊕ 6 ⊕ ⊕ 4 ∼ ⊕

6 ∼ 2 ⊕ 4 ∼ ⊕ 3 ⊕ 3 → 3 ∼ ⊕

6 ∼ ⊕ 12 ∼ ⊕ 4 ⊕ 4 ⊕ 3 ⊕ 4 ∼ ⊕

3 ∼ ⊕ 3 ⊕ 6 ∼ → 6 ∼ ⊕ 3 ⊕

6 ∼ ⊕ 4 ∼ ⊕ 3 ∼ ⊕ 4 ∼ ⊕ 3 →

6 ∼ ⊕ 4 ∼ ⊕ →

0→ 6 → 3 ⊕ 3 ∼ ⊕ 9 →
6 ∼ ⊕ 3 ⊕ 3 ∼ 3 ⊕ 6 ⊕ 13 → 3 ∼ ⊕ 6 ∼ 2 ⊕

6 ∼ ⊕ 7 ⊕ 4 ⊕ 6 ⊕ 3 ∼ ⊕ 10 →

3 ∼ 4 ⊕ ⊕ 6 ∼ ⊕ 6 ∼ ⊕ 4 ∼ ⊕

6 ∼ 2 ⊕ 4 ∼ ⊕ 3 ⊕ 3 →

12 ∼ ⊕ 3 ⊕ 4 ∼ ⊕ 3 ∼ ⊕ 6 ∼ →
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6 ∼ ⊕ 4 ∼ →

B.10 C2 × C2 × C2 × C2

0→ 21 → 64 → 15 ∼ 8 → 35 ∼ 2 → 15 ∼ →

0→ 3 → 8 → 7 ∼ 2 → 7 ∼ →

0→ → 2 ⊕ 2 → 3 ∼ ⊕ 3 ∼ ⊕ 4 →

⊕ ⊕ 3 ∼
2
⊕ 3 ∼

2
→ 2 ⊕ 9 ∼ →

3 ∼ ⊕ →

0→ 3 → 8 ⊕ 3 → 7 ∼ 2 ⊕ 3 ⊕ 8 →

7 ∼ ⊕ 7 ∼
2
→ ⊕ 6 ⊕ 7 ∼ →

⊕ 7 ∼ →

0→ → 2 ⊕ 2 → 3 ∼ ⊕ 3 ∼ ⊕ 4 →

⊕ 3 ∼
2
⊕ 3 ∼

2
→ 9 ∼ →

0→ 10 ⊕ 21 → 15 ∼ 8 → 35 ∼ 4 ⊕ 56 →

15 ∼ 3 ⊕ 35 ∼
2
→ 4 ⊕ 15 ∼ →

0→ → 2 ⊕ → 3 ∼ ⊕ ⊕ 2 →

⊕ 3 ∼ → ⊕ →

0→ 6 → 10 ⊕ 6 →
7 ∼ ⊕ 7 ∼ ⊕ 6 ⊕ 8 ⊕ 10 →

4⊕7 ∼
2
⊕ 3⊕7 ∼ ⊕7 ∼ ⊕ 8 →

6 ⊕ 7 ∼ ⊕ 4 ⊕ 7 ∼ ⊕ 7 ∼
2

→
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7 ∼ ⊕ 4 ⊕ 6 ⊕ 7 ∼ →

⊕ 7 ∼ →

0→ ⊕ 3 → 7 ∼ 2 → 7 ∼ 2 ⊕ 6 →
3 ⊕ 7 ∼ →

0→ 6 → 10 ⊕ 6 →
7 ∼ ⊕ 7 ∼ ⊕ 6 ⊕ 8 ⊕ 10 →

7 ∼
2
⊕ 3 ⊕ 7 ∼ ⊕ 7 ∼ ⊕ 8 →

7 ∼ ⊕ 7 ∼ ⊕ 7 ∼
2

→ 7 ∼ →

0→ → 3 ∼ ⊕ 2 →

2⊕3 ∼
2
⊕3 ∼ ⊕ → ⊕9 ∼ ⊕

⊕ 2 → 3 ∼ ⊕ 2 ⊕ 3 ∼ →

2 ⊕ ⊕ →

0→ → 3 ∼ ⊕ 2 → 2 ⊕ 3 ∼
2
⊕

3 ∼ ⊕ → 9 ∼ ⊕ ⊕ 2 →

2 ⊕ 3 ∼ →

0→ 35 → 15 ∼ 3 ⊕ 21 → 15 ∼ ⊕ 35 ∼
2
→

5 ⊕ 15 ∼
6
⊕ 15 ∼

4
→ 11 ⊕ 105 ∼ ⊕

14 → 15 ∼ ⊕ 15 ∼ →

0→ 3 → 6 → 7 ∼ ⊕ 3 → ⊕ 7 ∼ →

7 ∼ ⊕ 4 → 7 ∼ ⊕ →
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0→ 60 → 105 → 15 ∼ 3 ⊕ 15 ∼ 6 ⊕ 70 →

30 ⊕ 15 ∼
3
⊕ 15 ∼

6
⊕ 35 ∼ ⊕ 21 →

55 ⊕ 105 ∼ ⊕ 15 ∼
3

→

15 ∼ 4 ⊕ 24 ⊕ 35 ∼ →

15 ∼ ⊕ 35 ∼ → 15 ∼ ⊕ →

0→ 60 → 105 → 15 ∼ 3 ⊕ 15 ∼ 6 ⊕ 70 →

15 ∼
3
⊕ 15 ∼

6
⊕ 35 ∼ ⊕ 21 →

105 ∼ ⊕ 15 ∼
3

→ 35 ∼ → 15 ∼ →

B.11 C3

0→ → →

0→ → ⊕ →

0→ →

B.12 C9

0→ → →

0→ → ⊕ →

0→ → ⊕ →
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0→ → ⊕ →

0→ → ⊕ →

0→ → ⊕ →

0→ → ⊕ →

0→ → ⊕ →

0→ →

B.13 C3 × C3

0→ 2 → 3 →
д ↦ д2h
h ↦ д

⊕
д ↦ дh
h ↦ д

⊕ ⊕ →

0→ →
д ↦ д2h
h ↦ д

⊕ → ⊕
д ↦ д2h
h ↦ д

⊕
д ↦ д2h
h ↦ д

→ ⊕
д ↦ д2h
h ↦ д

→
д ↦ д2h
h ↦ д
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0→ →
д ↦ дh
h ↦ д

⊕ → ⊕
д ↦ дh
h ↦ д

⊕
д ↦ дh
h ↦ д

→ ⊕
д ↦ дh
h ↦ д

→
д ↦ дh
h ↦ д

0→ → ⊕ → ⊕ ⊕ → ⊕ →

0→ → ⊕ → ⊕ ⊕ → ⊕ →

0→ ⊕ 2 →
д ↦ д2h
h ↦ д

⊕
д ↦ дh
h ↦ д

⊕ ⊕ ⊕ 3 →

2 ⊕
д ↦ д2h
h ↦ д

⊕ ⊕
д ↦ дh
h ↦ д

⊕ →

0→ →
д ↦ д2h
h ↦ д

⊕ →
д ↦ д2h
h ↦ д

⊕
д ↦ д2h
h ↦ д

→
д ↦ д2h
h ↦ д

0→ →
д ↦ дh
h ↦ д

⊕ →
д ↦ дh
h ↦ д

⊕
д ↦ дh
h ↦ д

→
д ↦ дh
h ↦ д

0→ → ⊕ → ⊕ →

0→ → ⊕ → ⊕ →

0→ →
д ↦ д2h
h ↦ д

⊕
д ↦ д2h
h ↦ д

⊕ → ⊕
д ↦ д2h
h ↦ д

⊕
д ↦ д2h
h ↦ д

⊕

→
д ↦ д2h
h ↦ д

⊕

д ↦ д2h
h ↦ д

⊕ →
д ↦ д2h
h ↦ д

0→ → ⊕ ⊕ → ⊕ ⊕ ⊕ →

⊕ ⊕ →
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0→ →
д ↦ дh
h ↦ д

⊕
д ↦ дh
h ↦ д

⊕ → ⊕
д ↦ дh
h ↦ д

⊕
д ↦ дh
h ↦ д

⊕ →

д ↦ дh
h ↦ д

⊕
д ↦ дh
h ↦ д

⊕ →
д ↦ дh
h ↦ д

0→ → ⊕ ⊕ → ⊕ ⊕ ⊕ →

⊕ ⊕ →

0→ →
д ↦ д2h
h ↦ д

⊕
д ↦ д2h
h ↦ д

⊕ →
д ↦ д2h
h ↦ д

⊕
д ↦ д2h
h ↦ д

⊕ →

д ↦ д2h
h ↦ д

0→ → ⊕ ⊕ → ⊕ ⊕ →

0→ →
д ↦ дh
h ↦ д

⊕
д ↦ дh
h ↦ д

⊕ →
д ↦ дh
h ↦ д

⊕
д ↦ дh
h ↦ д

⊕ →
д ↦ дh
h ↦ д

0→ → ⊕ ⊕ → ⊕ ⊕ →

0→ 2 → ⊕ 2 → ⊕
д ↦ д2h
h ↦ д

⊕ ⊕
д ↦ дh
h ↦ д

⊕ →

2 ⊕ →

0→ 4 → 2 ⊕ 3 → 2 ⊕
д ↦ д2h
h ↦ д

⊕ ⊕
д ↦ дh
h ↦ д

⊕ ⊕
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2 → ⊕

д ↦ д2h
h ↦ д

⊕ ⊕
д ↦ дh
h ↦ д

⊕ ⊕ 2 →

д ↦ д2h
h ↦ д

⊕ ⊕
д ↦ дh
h ↦ д

⊕ ⊕ →

0→ 4 → 2⊕ 3 →
д ↦ д2h
h ↦ д

⊕ ⊕
д ↦ дh
h ↦ д

⊕ ⊕ 2 →

д ↦ д2h
h ↦ д

⊕ ⊕
д ↦ дh
h ↦ д

⊕ →
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