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algebras with elementary abelian Sylow p-subgroups

Simon F. Peacock

Abstract. In this article we present an upper bound on the representa-
tion dimension of the group algebra of a groupwith an elementary abelian Sylow
p-subgroup. Specifically, if k is a field of characteristic p and G is a group with
elementary abelian Sylow p-subgroup P,we prove that the representation dimen-
sion of kG is bounded above by the order of P. Key to proving this theorem is
the separable equivalence between the two algebras and some nice properties of
Mackey decomposition.

1 Introduction

The representation dimension of a finite dimensional algebra over a field was intro-
duced by Auslander in [Aus71] with the hope that it would measure how far an alge-
bra was from being of finite representation type. Auslander showed that an algebra
is of finite representation type if and only if its representation dimension is atmost 2.
For the past 50 years, representation dimension has proved very difficult to calculate
in general, with most results offering only bounds on the dimension. Two major re-
sults came from Iyama in 2003 and Rouquier in 2006. Iyama showed in [Iya03] that
representation dimension is always finite. In [Rou06], Rouquier gave the first exam-
ple of an algebra with representation dimension greater than 3 and in the same article
provided a family of algebras that demonstrate representation dimension can be arbi-
trarily large.

In this article we follow the ideas of Iyama, which were later refined by Ringel in
[Rin10] and utilised by Bergh and Erdmann in [BE11]. We use these ideas to establish
an upper bound for the representation dimension of certain group algebras kG. Specif-
ically, if k is a field of characteristic p and G is a finite group with elementary abelian
Sylow p-subgroup P, then we show that repdim kG ≤ ∣P∣.
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Theorem 4:

Let k be a field of characteristic p. If G is a finite group with elementary abelian
Sylow-p subgroup P then

repdim kG ≤ ∣P∣ .

This article is structured as follows: in section 2 we provide the necessary prelimi-
nary definitions and results. In section 3 we present the ideas behind the proof and in
section 4 we give the full details of the result.

Acknowledgment. I would like to thank Jeremy Rickard for all of his help; without
his guidance this work could not have been possible. I would also like to thank the
article reviewers formany helpful comments and suggestions.

2 Preliminaries

2.1 Representation dimension

Definition (Projective dimension). Let A be a finite dimensional algebra over a field,
let M be a finitely generated (right) A-module and let

. . . Pn . . . P2 P1 P0 M 0

be a projective resolution of M. We say that the resolution has length n if Pn ≠ 0 but
Pi = 0 for all i > n. If this property does not hold for any n, then the resolution is of
infinite length.

The projective dimension of M, denoted by pd(M), is defined to be the minimal
length of a projective resolution of M.

Definition (Global dimension). Let A be a finite dimensional algebra over a field. The
global dimension of A, denoted by gldim(A), is defined to be the supremum of the
projective dimensions of all finitely generated (right) A-modules.

gldim(A) = sup{pd(M) ∣M an A-module}

Definition (Generator/cogenerator). Let Abe a finite dimensional algebra over a field.
A module M is said to generate modA, the category of finitely generated right A-
modules, if for any module N ∈ modA there is a positive integer n and an epimor-
phism

Mn Ð→ N Ð→ 0.

A module M is said to cogenerate modA if for any module N ∈ modA there is a
positive integer n and amonomorphism

0Ð→ N Ð→ Mn .
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Note that M is a generator of modA if and only if M contains each finitely gen-
erated indecomposable projective A-module as a direct summand. Similarly, M is a
cogenerator ofmodA if and only if it contains each finitely generated indecomposable
injective A-module as a direct summand. In the case of self-injective algebras, such as
group algebras, these two properties are equivalent. Formore details regarding gener-
ators and cogenerators, and their relationships to projective and injectivemodules see,
for example, [AF92, sections 8, 17 and 18].

Definition (Representation dimension). Let A be a finite dimensional algebra over a
field. The representation dimension of A is defined by:

repdim(A) = inf {gldim (EndA(M)) ∣M generates and cogeneratesmodA}

If A is semisimple then each module is projective and hence repdimA = 0. Oth-
erwise, Auslander showed in [Aus71] that repdimA = 2 if and only if A is of finite
representation type; that is A has only a finite set of isomorphism classes of indecomp-
osablemodules.

2.2 Separable equivalence

Separable equivalence of finite dimensional algebras was introduced by Linckelmann
in [Lin11] and Bergh and Erdmann first discussed separable division in [BE11] as a
refinement of the idea. The same concept for ringswas studied by Kadison in [Kad95]
and [Kad17].

Definition (Separable division/equivalence). Let A and B be finite dimensional alge-
bras over a field. We say that A separably divides B if there are bimodules MA B and
NB A such that

(a) themodules MA , MB , NB and NA are finitely generated and projective; and

(b) there is a split bimodule epimorphism MA ⊗
B
NAÐ→ÐÐ→ AA A

We say that A and B are separably equivalent if A separably divides B and B sepa-
rably divides A.

If k is a field of characteristic p and G is a finite group with Sylow p-subgroup P,
then kG is separably equivalent to kP. This fact was noted by Linckelmann in [Lin11]
and the bimodules giving the equivalence are kGkP kG and kGkG kP (and the associated
tensor functors give induction and restriction). This separable equivalence will play a
major role in establishing an upper bound for the representation dimension of group
algebras.

It was shown in [Pea17] that the representation type of an algebra is preserved
under separable equivalence, but much less is known with regard to representation
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dimension. Bergh and Erdmann ([BE11]) used the separable equivalence between cer-
tain symmetric-group algebras and the group algebras for their Sylow p-subgroups to
prove bounds on representation dimension must hold. Following this work (at a talk
in 2015 [Ber15]) Bergh asked to what extent representation dimension is preserved un-
der separable equivalence. Specifically Bergh asked the following two questions, both
of which still remain open.

Question. If finite dimensional algebras A and B are separably equivalent does this
mean that repdimA = repdimB?

Question. If finite dimensional algebras A and B are separably equivalent and
repdimA = 3 does thismean that repdimB = 3?

Note that since separable equivalence is known to preserve representation typewe
also know that a representation dimension strictly less than three is also preserved.

3 Bounding representation dimension

Auslander showed in [Aus71] that the representation dimension of a selfinjective al-
gebra is bounded above by the algebra’s Loewy length, that is the length of its radical
series. In this section we will establish a different upper bound for the representation
dimension of a group algebra based only on the size of its Sylow subgroups. Specif-
ically we will show that if k is a field of characteristic p and G is a finite group with
elementary abelian Sylow p-subgroup P, then repdim kG ≤ ∣P∣. Note that if n is the
rank of the elementary abelian p-group P, then the Loewy length of kP is n(p− 1)+ 1,
which is in general less than ∣P∣ = pn. Thus in many cases Auslander’s bound is better
than the one we prove here; the advantage of our approach is that we no longer need
to know anything directly about the group algebra kG, and so in particular may not
know its Loewy length.

We will establish the upper bound for representation dimension by providing an
explicit construction of a generator M, and demonstrating that the global dimension
of EndM is less than or equal to the given bound.Wewill beginwith some elementary
definitions and an overview of the ideas behind the proof before giving the full details
in section 4.

Definition (Additive closure). Let A be a finite dimensional algebra over a field and
let M be a set of finitely generated A-modules. We define the additive closure of M,
denoted addM, to be the full subcategory of modA whose objects are finite direct
sums of direct summands ofmodules inM.

addM =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

N ∈ modA

RRRRRRRRRRRRRRRRRRR

there is a finite subset {M1, . . . ,Mr} ⊆M and
positive integers n1, . . . , nr such that N is a direct

summand of
r
⊕
i=1

Mn i
i

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

.

IfM = {M} is a singleton set then we use the alternative notation addM = addM.
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Notation. Let C be a category. We denote the full category of indecomposable objects
of C by indC. IfM is a set of finitely generatedmodules then wemirror the notation
above and denote indecomposable objects of addM by indM. Similarly we denote
the indecomposable summands of amodule M by indM.

Theorem 1: Bergh and Erdmann [BE11, theorem 2.3]

Let A and B be finite dimensional algebras over a field k and suppose there exists
a B-module M such that

(a) A separably divides B through XA B and YB A ; and

(b) HomA(Y ,M⊗
B
Y) ∈ addB M

then gldim(EndA(M⊗
B
Y)) ≤ gldim(EndB(M)).

In our situationwe have k a field of characteristic p,G a finite group and P a Sylow
p-subgroup of G. Now in the language ofTheorem 1 if we let

A = kG B = kP X = kGkG kP Y = kGkP kG

then Property (a) is immediate from Linckelmann’s original observation in [Lin11]. In
Property (b), M ⊗

kP
kG is simply induction M

G
↑ and HomkG( kGkP ,N) is restriction

N↓
P
for any kP-module M and any kG-module N . We therefore have the following

corollary.

Corollary. Let P be a Sylow p-subgroup of G and k a field of characteristic p. If M is a
kP-module such that M

G
↑↓P ∈ addM then

gldim(EndkG(M
G
↑)) ≤ gldim(EndkP(M)).

In light of this corollary, if we can find a generator M of kP, such that addM
is closed under induction to any group G that contains P as a Sylow p-subgroup, and
restriction back down to P, then the representation dimension of kG is bounded above
by the global dimension of EndkP(M).

Definition (Restriction of scalars). Recall that if ϕ∶H → L is a homomorphism of
groups and M is an L-module then we may give M the structure of an H-module by
restriction of scalars where we define the product mh = mϕ(h) for all m ∈ M and
h ∈ H. We denote this L-module by M↓

ϕ
. Note that if ϕ is the inclusion of a subgroup

then M↓
ϕ
= M↓

H
is the usual definition of the restriction of amodule to a subgroup.
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Let us assume that for a p-group P we have a finite set of modules MP with the
properties:

(res-ind) if X ∈MP and L is a subgroup of P then X↓
L

P
↑ ∈ addMP ;

(isom) if H and L are subgroups of P and there is an isomorphism ϕ∶H ∼→ L then

ind((MP↓L)
↓
ϕ
) = ind(MP ↓H),

where MP ↓H = {X
↓
H
∣X ∈MP} and (MP↓L)

↓
ϕ
= {(X↓

L
)↓
ϕ
∣X ∈MP} are respec-

tively the sets ofmodules obtained by restricting directly toH or by first restrict-
ing to L and then restricting to H via the isomorphism ϕ.

For any group G that contains P as a subgroup,Mackey decomposition gives us

M
G
↑↓P ≅ ⊕

s∈P G P

(M⊗ s) ↓
s−1Ps∩P

P
↑

and so if
M = ⊕

X∈MP

X

then the properties (res-ind) and (isom) mean that addM is closed under induction-
restriction. If M is also a generator for kP then we can use the global dimension of
EndkP M to simultaneously bound the representation dimension of all group algebras
for groups with P as a Sylow p-subgroup.

4 Elementary abelian groups

In this sectionwewill define a class ofmodules for elementary abelian p-groups that is
closed under induction-restriction and that contains a generator of the group algebra
(the regular module). Throughout this section we fix a prime p and a field k of char-
acteristic p. Using the remarks made at the end of section 3 we will use this class of
modules to bound the representation dimension of group algebras for all groups with
the given elementary abelian p-group as a Sylow p-subgroup.

We begin with some notation and then describe the class ofmodulesMP , which
we alluded to in section 3.

Notation. Let N be amodule with Loewy length n ∈ N, denoted Low lenN = n. That
is radn N = 0 but radn−1 N ≠ 0. For any positive integer n we denote by N(m) the
quotientmodule

N(m) =
N

radm N
.

By convention we let radm N = N and N(m) = 0 whenever m ≤ 0. Notice that if
0 ≤ m ≤ n = Low lenN then the Loewy length of N(m) is m.
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We denote by rN the quotient module rN = N(n−1). That is, r is an operator that
reduces the Loewy length of a non-zero module by one.

Definition (MP). Let P be an elementary abelian p-group and k a field of characteris-
tic p. LetMP be the set of indecomposable kP-modules that isminimal with respect
to the following properties:

(a) kP ∈MP ;

(b) if X ∈MP and H is a subgroup of P then ind(X↓
H

P
↑) ⊆MP ;

(c) if X ∈MP and m is a positive integer then ind(X(m)) ⊆MP .

Property (a) of this definitionmeans thatMP contains a generator of kP and prop-
erty (b) is simply stating that the class is closed under the (res-ind) property. To see
that MP is also closed under (isom) we first note that MP is closed under automor-
phisms of P. Now an elementary abelian p-group is isomorphic to a vector space over
the field of p elements and a subgroup is simply a subspace. To see that (isom) holds
we use the fact that any isomorphism between subspaces of a vector space can be ex-
tended to an automorphism of the whole space; thus the same holds for P. IfMP is a
finite set then we are in the position described at the end of section 3 and can useMP
to find an upper bound for the representation dimension of kG for any finite group G
with a Sylow p-subgroup isomorphic to P.

We have not yet mentioned property (c) of the definition: this property means
we obtain a strongly quasi-hereditary endomorphism ring. By a result of Ringel in
[Rin10], this is known to have finite global dimension. If we excluded property (c) we
could still calculate an upper bound for representation dimension, however in general
this value would be infinite.

4.1 Finiteness ofMP

We continue the assumption that P is an elementary abelian p-group and first aim to
show thatMP is a finite set. We will do this by defining a finite collection ofmodules
NP and by demonstrating that this is an alternative description ofMP . We defineNP
inductively: if P is the trivial group thenNP = {k}, otherwise we defineNP by

NP = {ri(X
P
↑) ∣X ∈ NH with ∣P ∶ H∣ = p and 0 ≤ i < p}

In order to show thatMP andNP are the same set we require the next three lemmas.

Notation (Subgroup). We use the notation H ≤ G to mean H is a subgroup of G. In
order to indicate that H is a proper subgroup of G we use the notation H < G.

Lemma 4.1. Let H be a proper subgroup of the elementary abelian p-group P.

If X ∈MH then X
P
↑ ∈MP .
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Proof. Aswe areworking in a p-group and each X ∈MH is indecomposablewe have
that XP

↑ is also indecomposable. This is a simple application of Green’s indecompos-
ability theorem: see [Gre59] or [Ben91, theorem 3.13.3].

Next we note that each X inMH can be obtained from X0 = kH after applying a
finite number of steps Xi ↦ Xi+1 where

(a) Xi+1 is a summand of Xi↓L
H
↑ for some subgroup L < H; or

(b) Xi+1 is a summand of (Xi)(m) for some positive integer m.

It is clear that kHP
↑ ∈MP and we will prove the result by induction on the number of

steps required to obtain X. We assume that X is obtain from Y in one step and that
Y
P
↑ ∈MP .

(a) Let us assume that L < H and X is an indecomposable summand of Y↓
L

H
↑. We

know by Mackey decomposition that Y is a summand of YP
↑↓H and so X

P
↑ is a

summand of YP
↑↓L

P
↑. All such summands are inMP by the assumption on Y and

the definition ofMP .

(b) Assume that X is a summand of Y(m) for some positive integerm and note that
without loss of generality wemay assume that H is an index p subgroup of P:

H = ⟨д2, . . . , дn⟩ < ⟨д1, д2, . . . , дn⟩ = P.

If we let x = (д1 − 1) then the induction of Y to P can be decomposed as

Y
P
↑ ≅

p−1
⊕
s=0

Y ⊗
kH

xs .

Similarly we have

radm (YP
↑) ≅

p−1
⊕
s=0

radm−s Y ⊗
kH

xs .

We can put these together and get that

(YP
↑)(m) ≅

p−1
⊕
s=0

Y(m−s) ⊗
kH

xs .

In particular ((YP
↑)(m))↓H containsY(m) as a summand and therefore also X as a

summand. That XP
↑ ∈MP is now immediate from the initial assumptions.
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Lemma 4.2. Let H be a proper subgroup of the elementary abelian p-group P.
If X ∈MP then ind(X↓

H
) ⊆MH .

Proof. We will follow a similar idea to the proof of Lemma 4.1.
The result is clear when X = kP and so we assume that X is obtained in one step

from Y ∈MP and that ind(Y↓
L
) ⊆ML for any proper subgroup L < P.

(a) Let us assume that L < P and X is an indecomposable summand of Y↓
L

P
↑. Thus

there is amodule Z ∈ML such that X ≅ Z
P
↑. ByMackey decompositionwe then

have
X↓
H
≅ Z

P
↑↓H ≅ Z ↓

L∩H

H
↑ ⊕ ⋅ ⋅ ⋅ ⊕ Z ↓

L∩H

H
↑

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣P ∶ LH∣-copies

and summands of this are inMH by the induction hypothesis and Lemma 4.1.

(b) Consider X ≅ Y(m) for some positive integer m. Without loss of generality we

may assume that there is a subgroup L < P and Y ≅ ZP
↑ for some Z ∈ML and

that both H and L are index p subgroups of P. We have

H = ⟨h, д3, . . . , дn⟩
L = ⟨l , д3, . . . , дn⟩

Suppose H ≠ L so that wemay decompose (kP)(m) as L-H–bimodules

(kP)(m) ≅
p−1
⊕
i=0
(kL)(m−i) ⊗

k[L∩H]
(h − 1)i .

Thus

X↓
H
≅ Z ⊗

kL
(kP)(m)↓H

≅ Z ⊗
kL
(
p−1
⊕
i=0
(kL)(m−i) ⊗

k[L∩H]
(h − 1)i)

≅
p−1
⊕
i=0

Z(m−i) ⊗
k[L∩H]

(h − 1)i

and so the result holds by the induction hypothesis. In the case that H = L a
similar argument applies.

Lemma 4.3. Let P be an elementary abelian p-group and let H < P be a subgroup of
index p. If X is a kH-module then for any positive integer m

(XP
↑)(m) ≅ (X(m)

P
↑)(m)
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Proof. For a kP-module Y we have that Y(m) ≅ Y ⊗
kP
(kP)(m) and so

(X(m)
P
↑)
(m)
≅ X ⊗

kH
(kH)(m) ⊗

kH
(kP)(m)

Fix д ∈ P and consider the automorphismofH given by conjugation: h ↦ д−1hд. This
map preserves rad(kH) for each д ∈ P and therefore rad(kH)kP = kP rad(kH) is a
two-sided ideal of kP. This ideal is nilpotent (as rad(kH) is nilpotent) and hencemust
be contained in rad(kP). Similarly radm(kH) ⊆ radm(kP) and so themap

(kH)(m) ⊗
kH
(kP)(m) Ð→ (kP)(m)

[h] ⊗ [д] ↦ [hд]

is well-defined with inverse [д]↦ 1⊗[д]. We therefore have that

(X(m)
P
↑)
(m)

≅ X ⊗
kH
(kH)(m) ⊗

kH
(kP)(m) ≅ X ⊗

kH
(kP)(m) ≅ (X

P
↑)(m)

Proposition. Let P be an elementary abelian p-group.
ThenNP =MP .

Proof. It is clear that NP = MP when P is the trivial group. We will proceed by
induction on the rank of P.

From Lemma 4.1 we see that NP ⊆MP , so we need only show that NP is closed
under the three properties definingMP .

Let H < P be an index-p subgroup. Since kH ∈MH we have that kP ∈ NP . Next
we consider the restriction-induction property. Given X ∈ NP ⊆ MP we know by
Lemma 4.2 that summands of X↓

L
are in ML, we also have that there is an index p

subgroup H of P with L ≤ H < P and by Lemma 4.1 summands of X↓
L

H
↑ are in MH ,

thus we have that summands of X↓
L

P
↑ are inNP .

Nowwe need only show thatNP is closed under taking quotients by powers of the
radical. If m = Low lenX is the Loewy length of X then Low lenXP

↑ = m + p − 1 and
thus Lemma 4.3 tells us that

rp(XP
↑) = (X

P
↑)(m−1) ≅ ((rX)

P
↑)(m−1)

= rp−1((rX)P↑) ∈ NP

and similarly
rp+i(XP

↑) = rp−1((ri+1X)
P
↑) ∈ NP .
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4.2 Bounding the global dimension

We have established that if P is an elementary abelian p-group then the setMP is finite,
thus we can define the kP-module M = ⊕X∈MP X. We wish to find an upper bound
for the global dimension of EndkP M. This bound will come as a result of the algebra
being strongly quasi-hereditary using a result of Ringel, which was based on ideas of
Iyama: see [Rin10] and [Iya03].

Definition (Strongly quasi-hereditary). Let Γ be a finite dimensional algebra over a
field, let {Si}i∈I be the set of simplemodules and Pi the projective cover of Si . We say
that Γ is left strongly quasi-hereditary with n layers if there is a function ℓ (called the
layer function)

ℓ∶ I → {1, . . . , n}

such that for each simplemodule Si , there is an exact sequence

0→ Ri → Pi → ∆i → 0

satisfying:

(a) Ri =⊕ j∈J Pj with ℓ( j) > ℓ(i) for each j ∈ J;

(b) if S j is a composition factor of rad∆i then ℓ( j) < ℓ(i).

Theorem 2: [Rin10]

If Γ is a left strongly quasi-hereditary algebra with n layers then gldim(Γ) ≤ n.

We will show that (EndkP M)op is left strongly quasi-hereditary by first defining
a layer function on the elements ofMP . This will directly transfer to a layer function
on the projective (and therefore also the simple) modules of (EndkP M)op.

We define a partition of MP inductively: first let M0
P = {kP}. Now let ri =

max{Low lenX ∣X ∈MP but X ∉M j
P for any j < i} be the maximum Loewy length

ofmodules not yet included in a part. Let di = min{dimX ∣X ∈MP and Low lenX =
ri but X ∉M j

P for any j < i} be the minimum dimension of modules of this Loewy
length. Now we can define the next layer as Mi

P = {X ∈ MP ∣ Low lenX =
ri and dimX = di}.

Example. We highlight this ordering with an example: let P = C2 × C2 = ⟨д, h⟩. We
have sixmodules inMP

Here we are denoting the regular module by . Each edge represents the
action of д − 1 and each edge represents the action of h − 1. The notation
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shows that д and h act in the same way. We use this notation as it nicely displays both
the dimension and Loewy length of each module. The classesMi

P are then given by

M0
P = { } Low len = 3, dim = 4

M1
P = { , , } Low len = 2, dim = 2

M2
P = { } Low len = 2, dim = 3

M3
P = { } Low len = 1, dim = 1

Theorem 3:

Let P be an elementary abelian p-group and let n be such thatMn
P is empty.

IfM =⊕X∈MP X then (EndkP M)op is left strongly quasi-hereditary with atmost
n layers.

Proof. Let X be amodule inMP so that

PX = HomkP(X ,M)

is an indecomposable projective EndkP(M)-module and let

π∶X → rX

be the natural projection. Define ∆X to be the quotient of HomkP(X ,M) by those
maps that factor through π:

∆X =
HomkP(X ,M)
{ f ○ π ∣ f ∶ rX → M}

and let RX = Hom(rX ,M). We claim that the short exact sequence

0Ð→ RX Ð→ PX Ð→ ∆X Ð→ 0

satisfies the properties in the definition of left strongly quasi-hereditary algebras.

(a)That RX is projective and that if X ∈Mi
P and rX ∈M j

P then j > i is clear.

(b) Assume that the simple module corresponding to Y ∈M j
P is a composition

factor of ∆X . We have amap PY → ∆X that lifts to amap PY → PX that does not factor
through RX :

PY

0 RX PX ∆X 0

∄
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By using the correspondence between addM and (EndkP M)op this gives a map
f ∶X → Y that does not factor through π:

Y

rX X
π

f
∄

If j > i then either Low lenY < Low lenX, or the Loewy lengths are equal but
dimY > dimX. In either case if m + 1 = Low len(X) then radm X must be in the
kernel of f .

Now assume that j = i and f does not factor through π. In this situation the head
of X maps onto the head of Y and since the dimensions of X and Y are equal, f must
be an isomorphism.

This is enough to show that if Y is a composition factor of rad∆X then j < i.

Corollary. Let P be an elementary abelian p-group and M = ⊕
X∈MP

X. Then

gldim(EndkP(M)) ≤ ∣P∣.

Proof. We need only establish that the number of distinct (Low len, dim) pairs inMP
is bounded-above by pr and this is certainly truewhen P is the trivial group. Now each
module inMP is one of p quotients of amodule induced from an index-p subgroup.
Thus the set of distinct pairs can only increase by a factor of atmost p for each increase
in rank.

Theorem 4:

Let k be a field of characteristic p. If G is a finite group with elementary abelian
Sylow-p subgroup P then

repdim kG ≤ ∣P∣ .

Proof. Let M be as in the corollary toTheorem 3, then it follows that

repdim(kG) ≤ gldim(EndkG(M
G
↑)) by definition of representation dimension,

≤ gldim(EndkP M) by the corollary toTheorem 1,

≤ ∣P∣ by the corollary toTheorem 3.
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5 Final remarks and calculations

We end with some comments on the tightness of the bound given by the theorem
of the last section and some implications for other (non elementary-abelian) groups.
Since the class ofmodulesMP has an explicit construction, for small enough groups
we can simply construct the requiredmodule (say inMagma) and calculate the global
dimension of its endomorphism ring. In fact, even if the group P is not elementary
abelian we can still attempt to construct the class MP , however we no longer have
a guarantee that it is finite. The first example of an abelian group for which MP is
infinite is the group P = C8×C2×C2, but there are examples of non-abelian groups of
order 16with the same property. Even in the case thatMP is finite,without the implicit
homogeneity we have with elementary abelian groups, the class need not satisfy the
(isom) property; for example if P = C4 × C8 then the (isom) property does not hold.
In this case even if we can calculate the global dimension of the endomorphism ring,
this value will not (necessarily) provide a bound on the representation dimension for
all groups with Sylow p-subgroup isomorphic to P.

With the preceding remarks in mind, we have calculated the global dimension of
the presented endomorphism ring for each abelian p-group of order 16 or less. This
gives bounds for the representation dimension of any group algebra of a group with
the given Sylow p-subgroup. For cyclic groups the global dimension is always 2, the
remaining values can be found in the table below. As we can see from the values in
this table, the bound given byTheorem 4 is not tight except in the case that P = C2.

P C2 × C2 C4 × C2 C2 × C2 × C2 C3 × C3 C8 × C2
repdim ≤ 3 5 6 5 5

P C4 × C4 C4 × C2 × C2 C2 × C2 × C2 × C2
repdim ≤ 6 8 8
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