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A quiver, Q, is a directed graph.



A quiver, Q, is a directed graph.




A representation of a quiver over a field k is an assignment of a k-vector space,
Vi. to each vertex i and a k-linear map, fq: Vi — Vj to each edge i 4 ]



Representation

A representation of a quiver over a field k is an assignment of a k-vector space,
V;. to each vertex i and a k-linear map, f,: V; — Vj to each edge i 5.

Example

Vi

f
fu fp 7/1

V1:§V2*>V3

fCU f\A

)

fe Vs
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Morphism of representations

fV = (Vi fu) and W = (W;, g4 ) are two representations of a quiver Q, then
a morphism ¢: V — W is a set of k-linear maps {¢;: V; — W; | i a vertex}
such that for each edge i — j the square

commutes; that is gup; = ¢ fu-
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Morphism of representations

fV = (Vi fu) and W = (W;, g4 ) are two representations of a quiver Q, then
a morphism ¢: V — W is a set of k-linear maps {¢;: V; — W; | i a vertex}
such that for each edge i — j the square

fa
e
¢i 47]'
Wi —— W,

commutes; that is gup; = ¢ fu-

If every ¢; is invertible then ¢ is an isomorphism.
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Algebra is x sighting

Aring®, A, is an algebra over a field k, if A also has the structure of a k-vector
space.

* Abelian group under addition, with a (not necessarily commutative) multiplication that
distributes over addition. | always assume rings have a unit.
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Aring*, A, is an algebra over a field k, if A also has the structure of a k-vector
space.

C is a 2-dimensional algebra over IR.

* Abelian group under addition, with a (not necessarily commutative) multiplication that
distributes over addition. | always assume rings have a unit.



A path in a quiver is a sequence of zero or more edges, starfing from a given
vertex.

The product of two path is defined to be the concatenation if this makes sense
or zero otherwise.



Paths

A path in a quiver is a sequence of zero or more edges, starting from a given
vertex.

The product of two path is defined to be the concatenation if this makes sense
or zero otherwise.

Example

1—>2—3

The paths are eq, e, €3, &, B
and ap.
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Paths

A path in a quiver is a sequence of zero or more edges, starting from a given
vertex.

The product of two path is defined to be the concatenation if this makes sense
or zero otherwise.

Example
o B ereon =n

1—2——3

The paths are eq, e, €3, &, B
and ap.
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Paths

A path in a quiver is a sequence of zero or more edges, starting from a given
vertex.

The product of two path is defined to be the concatenation if this makes sense
or zero otherwise.

Example

1o =«
LN S
xef=uap

The paths are eq, e, €3, &, B
and ap.
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Paths

A path in a quiver is a sequence of zero or more edges, starting from a given
vertex.

The product of two path is defined to be the concatenation if this makes sense
or zero otherwise.

Example

o B ereon =n

1—2—>3
xef=up
The paths are eq, e, €3, &, B
and af. wees =0
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Path algebra

For a quiver Q. the path algebra over a field k, denoted kQ, is the vector space

with basis all paths. The ring multiplication is then extended linearly from path
multiplication.
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Path algebra

For a quiver Q. the path algebra over a field k, denoted kQ, is the vector space

with basis all paths. The ring multiplication is then extended linearly from path
multiplication.

Example
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Path algebra

For a quiver Q. the path algebra over a field k, denoted kQ, is the vector space

with basis all paths. The ring multiplication is then extended linearly from path
multiplication.

Example

kQ =ke; ®ka D ka’ D - - -
Q=)
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Path algebra

For a quiver Q. the path algebra over a field k, denoted kQ, is the vector space

with basis all paths. The ring multiplication is then extended linearly from path
multiplication.

Example

kQ =ke; ®ka D ka’ D - - -
0= {) = K[a]
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Path algebra

For a quiver Q. the path algebra over a field k, denoted kQ, is the vector space

with basis all paths. The ring multiplication is then extended linearly from path
multiplication.

Example

kQ =ke; ®ka D ka’ D - - -
0= {) = K[a]

Y e; is the identity element of kQ.
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Module

A module over a ring generadlises the idea of a vector space over a field. M is a
module over a ring R if

» M is an abelian group,

> thereisamap M x R — M that is compatible with the ring and group
operations.
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Module

A module over a ring generadlises the idea of a vector space over a field. M is a
module over a ring R if

» M is an abelian group,

> thereisamap M x R — M that is compatible with the ring and group
operations.

Example

Z" is a module over Z with the obvious action:

(ag,...,an)x — (apx, ..., a,x)
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Modules of kQ are representations of Q over k.



Modules of kQ are representations of Q over k.

Given a module M:



Modules of kQ are representations of Q over k.

Given a module M:

» For a vertex i, define V; = Me;.



Modules < Representations

Modules of kQ are representations of Q over k.

Given a module M:
> For a vertex i, define V; = Me;.

» Foranedge i — j. define f, to be multiplication by «

me; — me;x = mae; € Me;
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Modules < Representations
Modules of kQ are representations of Q over k.

Given a module M:
> For a vertex i, define V; = Me;.

» Foranedge i — j. define f, to be multiplication by «

me; — me;x = mae; € Me;

Example
Xy M€4
X xB /
M — M€1 :gi M€2 _— M€3
X
[,
. O e
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Representations of Q over k are modules of kQ.



Representations of Q over k are modules of kQ.

Given a representation (V;, f,):



Representations of Q over k are modules of kQ.

Given a representation (V;, f,):

» M = @ V; as an abelian group.



Modules < Representations

Representations of Q over k are modules of kQ.

Given a representation (Vj, fy):
» M = @ V; as an abelian group.
» M x kQ — M is extended from the action
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Modules < Representations

Representations of Q over k are modules of kQ.

Given a representation (Vj, fy):
» M = @ V; as an abelian group.
» M x kQ — M is extended from the action

v; fi=7j
viee; ! ], forv; € V;
0 otherwise
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Modules < Representations

Representations of Q over k are modules of kQ.

Given a representation (Vj, fy):
» M = @ V; as an abelian group.
» M x kQ — M is extended from the action
vieej > {Ui ifl:]_ forv; € V;
0 otherwise
fulv) Hi5 e

vienx ]
0 otherwise
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These associations are inverses of one another.

M — (Me;, xa)



These associations are inverses of one another.

M — (Me;, xa)

— @Mei



These associations are inverses of one another.

—
—

I
<
7



These associations are inverses of one another.

M — (Me;, xa)
— @Mei

= MZei
= M



These associations are inverses of one another.

M — (Me;, xa)

— @Mei



Modules < Representations

These associations are inverses of one another.

M — (Mei,XlX)
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Modules < Representations

These associations are inverses of one another.

M — (Mei,XlX)

Vi.fa) — PV

Representations of Quivers Simon Peacock (University of Bristol)






	Quivers
	Representations

	Path Algebra
	Modules

	Modules <-> Representations

