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Quiver

A quiver, Q, is a directed graph.
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Representation

A representation of a quiver over a field k is an assignment of a k-vector space,

Vi, to each vertex i and a k-linear map, fα : Vi → Vj to each edge i α→ j.

Example
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Morphism of representations

If V = (Vi, fα) and W = (Wi, gα) are two representations of a quiver Q, then

a morphism φ : V →W is a set of k-linear maps {φi : Vi →Wi | i a vertex}
such that for each edge i α→ j the square

Vi Vj

Wi Wj

fα

φi φj

gα

commutes; that is gαφi = φj fα.

If every φi is invertible then φ is an isomorphism.
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Basic linear algebra
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Algebra is x sighting

A ring∗, A, is an algebra over a field k, if A also has the structure of a k-vector

space.

Example

C is a 2-dimensional algebra over R.

∗Abelian group under addition, with a (not necessarily commutative) multiplication that

distributes over addition. I always assume rings have a unit.
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Paths

A path in a quiver is a sequence of zero or more edges, starting from a given

vertex.

The product of two path is defined to be the concatenation if this makes sense

or zero otherwise.

Example

1 2 3
α β

The paths are e1, e2, e3, α, β
and αβ.

e1 • α = α

α • β = αβ

α • e3 = 0
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Path algebra

For a quiver Q, the path algebra over a field k, denoted kQ, is the vector space

with basis all paths. The ring multiplication is then extended linearly from path

multiplication.

Example

Q = •

α kQ = ke1 ⊕ kα⊕ kα2 ⊕ · · ·

∑ ei is the identity element of kQ.
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Module

A module over a ring generalises the idea of a vector space over a field. M is a

module over a ring R if

I M is an abelian group,

I there is a map M× R→ M that is compatible with the ring and group

operations.

Example

Zn is a module over Z with the obvious action:

(a0, . . . , an)x 7→ (a0x, . . . , anx)
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Modules↔ Representations

Modules of kQ are representations of Q over k.

Given a module M:

I For a vertex i, define Vi = Mei.

I For an edge i α→ j, define fα to be multiplication by α

mei 7→ meiα = mαej ∈ Mej

Example

M 7→

Me4

Me1 Me2 Me3

Me5

×α

×ζ

×β

×ε

×γ

×δ
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Modules↔ Representations

Representations of Q over k are modules of kQ.

Given a representation (Vi, fα):

I M =
⊕

Vi as an abelian group.

I M× kQ→ M is extended from the action

vi • ej 7→
{

vi if i = j
0 otherwise

for vi ∈ Vi

vi • α 7→
{

fα(vi) if i α→ •
0 otherwise
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Modules↔ Representations

These associations are inverses of one another.

M 7→ (Mei,×α)

7→
⊕

Mei

= M ∑ ei

= M

(Vi, fα) 7→
⊕

Vi

7→
((⊕

jVj
)
ei, fα

)
i,α

= (Vi, fα)
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Yay MINGLE!
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