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Abstract

The classification of finite simple groups was a ground-breaking theorem in group theory,
which states that every simple group (the prime numbers of group theory) belongs to one of
three infinite families, or a list of 26 weird exceptions. The Monster group is the largest of
these sporadic groups. When Griess first constructed theMonster he did so as a group acting
on a real vector space, now known as the Griess algebra.

In this talk I will present some interesting properties of the Griess algebra, together with
the definitions we draw generalizing these ideas (fusion laws and decomposition algebras). I
will go on to show how the representation theory of groups can explain some of these proper-
ties. This naturally leads to some open questions into how group representation-theory and
decomposition algebras are connected.

Thiswork is jointwithTomDeMedts, Sergey Shpectorov andMichielVanCouwenberghe
and themajority of our results are contained in [DMPSVC19]. Iwould also like to thank Justin
McInroy formany useful conversations. Iwould also like tomention thatmany of these ideas
originated with Sasha Ivanov and can be found in [Iva09].

1 Introduction

The classification of finite simple groups
The classification of finite simple groups was a ground-breaking result in group theory and was
the culmination of decades of work. The simple groups can be thought of as the primes of group
theory: in the same way the natural numbers can be broken down into their prime factors, so
can a finite group be broken down into its simple constituents.

Theorem 1.1: Classification of finite simple groups

Every finite simple group is isomorphic to one of the following:

infinite families

• a cyclic group of prime order
• an alternating group of degree as least 5
• a group of Lie type

sporadic groups

1



[Gri76] Griess, Jr., The structure of the
“Monster” simple group, Proceedings of
the Conference on FiniteGroups (Univ.
Utah, Park City, Utah, 1975), 1976,
pp. 113–118

[Tho78]Thorne,On Fischer’s “Monster”,
Ph.D. thesis,University of Birmingham,
1978

[Gri82]Griess, Jr.,The friendly giant, In-
vent. Math. 69 (1982), no. 1, 1–102

[GMS89] Griess, Jr., Meierfrankenfeld,
and Segev, A uniqueness proof for the
Monster, Ann. of Math. (2) 130 (1989),
no. 3, 567–602

• one of 27* weird exceptions

The biggest sporadic group is called theMonster group, often denotedM and has an order of
about 8 × 1053. The second biggest is called the BabyMonster with an order of around 4 × 1033.

History
Early to mid 70s

Bernd Fischer first predicted the existence of the Monster group in the early 70s and in-
dependently Robert Griess predicted its existence in a paper from 1976 ([Gri76]). Griess
wrote that it should be a groupwith two conjugacy classes of involutions and the centralizer
of one type of involution should be isomorphic to a double cover of the BabyMonster, 2.B.

Late 70s
The character table of a group is a square grid of numerical data, which dictates much
of the structure of the group, although not quite it’s isomorphism class. Fischer, Donald
Livingstone and Michael Thorne managed to calculate the character table of the Monster
group ([Tho78]). Allegedly the calculations took all night and they were all heavy smokers,
somuch so that thereweremajor complaints by the school’s cleaning staff about the state of
the room. Although, undeniably it was a remarkable achievement, not least because they
still didn’t know if the group even existed.

The 80s
Griess finally managed to show that a Monster group existed in 1982 in his paper The
friendly giant ([Gri82]). In this paper he exhibited theMonster group as the automorphism
group of a 196 884-dimensional R-algebra (now known as the Griess algebra), but at this
time itwas still not known to beunique. JohnThompsonhad shown that uniquenesswould
follow from the existence of a 196 883-dimensional faithful representation and itwas in 1985
thatNorton first claimed to have proved of it’s existence. Norton’s proof never appeared in
print however, and so it wasn’t until 1989 when Griess, Ulrich Meierfrankenfeld and Yoav
Segev published their paper [GMS89] that a proof of uniqueness was first seen.

2 TheGriess algebra
TheMonster groupwas first constructed as the automorphismgroup of the 196, 884-dimensional
R-algebra now known as the Griess algebra.

Definition (Algebra). For a field F, an F-algebra A is a vector space over F together with a
multiplication that distributes over addition and commutes with scalars. That is there is amap

A× A Ð→ A
(a, b) ↦ ab

such that
a(b + c) = ab + ac
(a + b)c = ac + bc

(λa)b = a(λb) = λ(ab)
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†The author is far from ashamed to say
that he has very little idea what this
means, but thought it sounded impor-
tant and so simply copied it directly
from wikipedia.

for all a, b, c ∈ A and λ ∈ F.
Note thatwe can drop this last condition by instead defining themultiplication as amap from

the tensor product, A⊗ A→ A, rather than from the Cartesian product.

TheGriess algebra is a 196 884-dimensionalR-algebra, that is commutative butnon-associative.

commutative (ab) = (ba)∀a, b ∈ A,
non-associative (ab)c ≠ a(bc) for some a, b, c ∈ A.

Griess began with a particular module for the group 21+24 .Co1 and then defined the algebra
multiplication on thismodule. He then showed that the group of automorphisms of this algebra
formed a simple group consistent with the predictedMonster group.

Definition (Algebra automorphism). For an algebra A, an automorphism ϕ∶A → A, is a linear
map that respects the algebramultiplication:

ϕ(a)ϕ(b) = ϕ(ab) for all a, b ∈ A.

TheGriess algebra turns out to be the same as the degree 2 part of themonster vertex operator
algebra. In particular describes the conformal field theory for 24 free bosons compactified on the
torus induced by the Leech lattice orbifolded by the two-element reflection group†.

Fusion laws
Inside the Griess algebra there are a set of special idempotent elements that we call axes. Letting
A denote the Griess algebra and letting a ∈ A be an axis we can define the adjoint action of a
on A.

ada ∶A z→ A
x ↦ ax

This defines a linearmap on the vector space A and in particular it turns out to be diagonalizable.
Thus we can decompose A into its eigenspaces. Since a is idempotent we know that ada(a) = a
and thus a is a 1-eigenvector. In fact the 1-eigenspace is one-dimensional and hence, up to scaling,
a is the only 1-eigenvector. The other eigenvalues for ada are 0, 1/4 and 1/32 and their eigenspaces
have dimensions 96256, 4371 and 96256 respectively.

It may seem strange to have an idempotent with eigenvalues that are neither 1 or 0, but this
is only implied in the associative case. If we have an associative multiplication and idempotent
e = e2 with x a λ-eigenvector for ade then

λx = ade(x) = ex = (e2)x = e(ex) = e(λx) = λ(ex) = λ2x

so λ ∈ {0, 1}. However in thenon-associative case there isno reason to believe that (e2)x = e(ex)
and hence λ is not so constrained.

We write Aa
λ for the λ-eigenspace of ada . Now we have already claimed that the 1-eigenspace

is spanned by a and so it is clear that for any eigenvalue λ we have Aa
1Aa

λ ⊆ A
a
λ . In fact the algebra

multiplication also acts in a particularly nice way with respect to the other eigenspaces. This can
be tabulated as follows
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Aa
1 Aa

0 Aa
1/4 Aa

1/32

Aa
1 Aa

1 0 Aa
1/4 Aa

1/32

Aa
0 Aa

0 Aa
1/4 Aa

1/32

Aa
1/4 Aa

1 ⊕ Aa
0 Aa

1/32

Aa
1/32 Aa

1 ⊕ Aa
0 ⊕ Aa

1/4

For example if x and y are both 1/4-eigenvectors then xy canbe expressed as a sumof 1-eigenvectors
and 0-eigenvectors. Note that since themultiplication is commutativewe need only complete the
upper triangular part of this table. This table inspires what we now call a fusion law.

Definition (Fusion law). A fusion law is a set X and a binary operation ∗

X × X Ð→ 2X

(x , y) ↦ x ∗ y

If x ∗ y = y ∗ x for all x , y ∈ X then we say the law is symmetric.
If e ∗ x ⊆ {x} and x ∗ e ⊆ {x} for all x ∈ X then we call e a unit of the fusion law.
If e ∗ x = ∅ = x ∗ e for all x ∈ X then we say e is annihilating.
If e ∗ x ⊆ {e} and x ∗ e ⊆ {e} for all x ∈ X then we say e is absorbing.

The fusion law we saw for the Griess algebra is called the Ising fusion law. It is a symmetric
fusion law and both the 1 and 0 parts are units.

Definition (Morphism of fusion laws). Let (X , ∗) and (Y , ⋆) be fusion laws. A morphism of
(X , ∗) to (Y , ⋆) is a set map η∶X → Y such that (for the obvious extension of η to the power
sets)

η(x1 ∗ x2) ⊆ η(x1) ⋆ η(x2).

An obvious source of fusion laws come from themultiplication tables of groups. Specifically
if G is a group we define the group fusion law (G , ●) by д ● h = {дh} for all д, h ∈ G. We call any
morphism of a fusion law (X , ∗) to the group fusion law for G a grading of (X , ∗) by G.
Example. Let X = {1, 0, 1/4, 1/32} and (X , ∗) be the Ising fusion law. Define the map η∶X → C2
from X to the cyclic group on two elements by

η(x) = { 0 if x ∈ {1, 0, 1/4}
1 if x = 1/32
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Aa
1 Aa

0 Aa
1/4 Aa

1/32

Aa
1 Aa

1 0 Aa
1/4 Aa

1/32

Aa
0 Aa

00 Aa
1/4 Aa

1/321Aa
1/4 Aa

1 ⊕ Aa
0 Aa

1/32

Aa
1/32 1 Aa

1 ⊕ Aa
0 ⊕ Aa

1/40
Decomposition algebras
From a fusion law we wish to define decompositions of an algebra with respect to the law.

Definition (Decomposition). Given a fusion lawF = (X , ∗) and an algebraA. AnF-decomposition
of A is a direct sum decomposition of A as a vector space with a summand for each x ∈ X,

A =⊕
x∈X

Ax ,

such that for all x , y ∈ X
AxAy ⊆ ⊕

z∈x∗y
Az

def= Ax∗y .

An F-decomposition algebra is an algebra A together with a list of F-decompositions Φ,
indexed by some some set I . That is, for each i ∈ I , Φ[i] is an F-decomposition.

Example. The Griess algebra is a decomposition algebra for the Ising fusion law, where we can
take I to be the set of axes. For an axis a ∈ A,we defineΦ[a] to be the eigenspace decomposition
of Awith respect to ada .

The final interesting property of the Griess algebra, over and above a decomposition algebra
is the existence of an axis for each decomposition. This inspires the final definition of an axis for
a decomposition.

Definition (Axis). Let A = ⊕x∈X Ax be an (X , ∗)-decomposition of an algebra, A. An element
a ∈ A is called a left axis of the decomposition if there are field elements λx ∈ F for each x ∈ X
such that ab = λxb whenever b ∈ Ax . We similarly define right axis for right multiplication by
a and axis where the multiplication can be on either side, such as in the case of a commutative
algebra.

A decomposition algebra A, is called (left/right) axial if there are scalars λx for each x ∈ X
and elements a i for each i ∈ I such that a i is a (left/right) axis for Φ[i].

3 Groups from algebras
The Griess algebra was developed as a way of describing the Monster group and in general we
would like to assign a group to each decomposition algebra. Calculating the automorphismgroup
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of an algebra can be hard in practice and so we wish to find an easy to describe class of automor-
phisms. We begin with a decomposition algebra for a group fusion law. Note that everything we
will describe can be transferred to a general fusion law via a grading.

Miyamoto automorphisms
For simplicity of expositionwewill restrict to the case of a C2-grading as is the case for theGriess
algebra. Let A be a decomposition algebra for the C2 group law and let i ∈ I . We have the ith
decomposition of A into two parts A = Ai

0 ⊕ Ai
1. This decomposition allows us to define the ith

Miyamoto automorphism of A as

τ i ∶A Ð→ A

x ↦
⎧⎪⎪⎨⎪⎪⎩

x x ∈ Ai
0

−x x ∈ Ai
1

and extended linearly.
It is easy to check that this is an automorphism: let x0 , y0 ∈ A0 and x1 , y1 ∈ A1 then for

x = x0 + x1 and y = y0 + y1
τ(xy) = τ(x0 y0 + x1 y0 + x0 y1 + x1 y1)

= τ(x0 y0) + τ(x1 y0) + τ(x0 y1) + τ(x1 y1) by linearity

= x0 y0 − x1 y0 − x0 y1 + x1 y1 by the fusion law

= (x0 − x1)(y0 − y1)
= τ(x)τ(y)

The important point here is that themap

C2 Ð→ F

0 ↦ 1

1 ↦ −1

is a linear character for C2. In general we can define aMiyamoto automorphism for any decom-
position and any linear character.

Definition (Miyamoto group). The Miyamoto group of a group-graded decomposition algebra
is the subgroup of the automorphism group of the algebra, generated by all Miyamoto automor-
phisms.

4 Representation theory
We briefly saw reference to linear characters in the last section, this is an exampleof a 1-dimensional
module (or representation) for a group. Here we will consider more general modules. We will
restrict to the case of characteristic zero; in this setting the representation theory of groups is par-
ticularly nice: for a given finite group there is a finite number of simple modules, with all other
modules being (isomorphic to) a direct sum of these. The character table for a group is a table
numerical information linked to these simple modules. We begin with Schur’s lemma, which
essentially says that simplemodules act like 1-dimensional spaces.
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Definition (Module). Let G be a group and F a field. A module M for G over F is an vector
space (over F) together with an action of G:

G ×M Ð→ M
(д,m) ↦ дm

such that д(hm) = (дh)m and λ(дm) = д(λm) for all д, h ∈ G, m ∈ M and λ ∈ F.

Lemma 4.1 (Schur). Let G be a finite group and let S and T be simple representations of G over a
field F. Then

HomFG(S , T) ≅ {
F S ≅ T
0 otherwise

Thismeans that once you have found an isomorphismpairing a basis of S to a basis of T , s i ↦
t i , then the only othermaps that can exist involve scaling the basis independently of i, s i ↦ λt i .
A slight generalization of Schur’s lemma tells us that if M is amodule and S is a simplemodule
then Hom(M , S) = 0 unless S is isomorphic to a direct summand of M. IfHom(M , S) ≠ 0 then
we say that S is a constituent of M.

The representation fusion law
The tensor productwasmentioned briefly in the definition of amultiplication for an algebra. We
can form the tensor product of modules in a similar way. If we take two modules M and N of
dimensionsm and n respectively, then their tensor productM⊗N is amodule of dimensionmn.
This is simply the tensor product of vector spaces together with the diagonal action

д(x ⊗ y) = дx ⊗ дy.

Now since we can decompose M ⊗ N into simple summands we can ask what are its con-
stituents. In particular, if S and T are simple modules we can ask what are the constituents of
S ⊗ T . This idea leads to the definition of the representation fusion law.

Definition (Representation fusion law). Let S = {S i} be a set of (some or all) simple modules
for G over F. The representation fusion law (S , ∗) is given by

S i ∗ S j = {T ∈ S ∣T a constituent of S i ⊗ S j}

Proposition 4.2. Let G be a finite group, F a field and S the complete set of simplemodules. Then
the fusion law (S , ∗) is graded by the Z(G), the center of G.

The grading is given by first restricting S ∈ S to Z(G) ≤ G, which has a unique constituent
up to isomorphism. We then note that the character group of an abelian group is isomorphic to
the group and this gives the grading.

Decomposition algebras via representation theory
We demonstrate how to get an (axial) decomposition algebra using representation theory.
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LetAbe the smallest faithful representation of theMonsteroverC; this is a 196 883-dimensional
module. We wish to turn themodule A into an algebra and so the first thing we need is amulti-
plication

A⊗ A→ A.

As vector spaces there aremany suchmaps however, as a result of Schur’s lemma a group invariant
map exists if an only if A is a constituent of A⊗ A. It turns out for this module there is a single
copy of A in the direct sum decomposition of A⊗ A and hence, up to scaling, there is a unique
M-invariantmultiplication on A. Thismultiplication turns out to be commutative.

Nextwewish to turn A into a decomposition algebra, and ideally wewould like its fusion law
to be graded. When Griess, first predicted the Monster he noted that 2.B should be contained
inside it as the centralizer of a particular type of involution (the 2A involutions). Let д ∈ M be
one of these involutions andH = CG(д) ≅ 2.B be its centralizer. Importantly,H has a non-trivial
center and so its representation fusion law is graded.

Let us consider the restriction of A to the subgroup H as amodule. Although A is indecomp-
osable as aMmodule A↓

H
decomposes into four non-isomorphic simple summands

A↓
H
≅ Aa ⊕ Ab ⊕ Ac ⊕ Ad

where Aa is the 1-dimensional trivial module and the remaining threemodules are 96255-, 4371-
and 96256-dimensional respectively. Let us consider the multiplication with respect to this de-
composition. Firstly, since themultiplication is H-invariant (as it isM-invariant) we know that
Hom(A i ⊗A j ,Ak) = 0 unless Ak is a constituent of A i ⊗A j . Now since Aa is the trivial module
we know immediately that Aa ⊗ A i ≅ A i for any i ∈ {a, b, c, d}. Thus we can deduce that

AaAa ⊆ Aa AaAb ⊆ Ab AaAc ⊆ Ac AaAd ⊆ Ad

Similarly, we can consider the constituents of A i ⊗ A j for each pair {i , j} ∈ {b, c, d} and deduce
the following fusion table

Aa Ab Ac Ad

Aa Aa Ab Ac Ad

Ab Ab Ac Ad

Ac Aa ⊕ Ab Ad

Ad Aa ⊕ Ab ⊕ Ac

This is exactly the fusion law for S = {Aa ,Ab ,Ac ,Ad}. Moreover, we know that Hom(Aa ⊗
A i ,A i) ≅ C for each i ∈ {a, b, c, d} and hence if we let e ∈ Aa then ade acts like a scalar on each
part, that is e is an axis for the decomposition.

Finally, we want to consider the Miyamoto automorphism for this decomposition. In order
to have aMiyamoto automorphismwe require that the fusion law is graded. Proposition 4.2 tells
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us that the representation fusion law for H is C2 graded, however we need to check that this
subfusion law is also graded. For each simplemodule A i we need to check which simplemodule
is a constituent of A i↓C2

. When we do this we see that Aa , Ab and Ac map to the trivial character
and Ad maps to the non-trivial character. Thus we have a non-trivial Miyamoto automorphism
that acts like the identity on the first three parts and acts like−1 on the fourthpart. It isnotdifficult
to show that this Miyamoto automorphism is the same as the action of д, the 2A involution we
chose at the beginning.

Now the choice of д was arbitrary amongst its conjugacy class and by using all such conju-
gates we obtain a decomposition, axis andMiyamoto automorphism for each element in the 2A
conjugacy class. Thus, for this particular axial algebra, the automorphism group andMiyamoto
group are isomorphic, and are isomorphic to theMonster.
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