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(1) (a) Let X = t3 and Y = t5. Then we have

X5 = t15 = Y 3,

and hence

{(t3, t5) | t ∈ C} = V(X5 − Y 3) ⊆ C2.

(b) Firstly, note that since t 7→ t2 is a surjective map in C, this set is
equivalent to

{(s, s2) | s ∈ C}.
Then this set is clearly equal to

V(Y −X2) ⊆ C2.

(c) We have

{(t2 − 2t, t3 − 3t2 + 3t + 2) | t ∈ C}
={((t− 1)2 − 1, (t− 1)3 + 4) | t ∈ C}
={(s2 − 1, t3 + 4) | s ∈ C}.

Then if X = s2 − 1 and Y = t3 + 4, we have

(X + 1)3 = (Y − 4)2,

and hence the set is

V((X + 1)3 − (Y − 4)2) ⊆ C2.

(d) For this question, set X = t3 and Y = t4 + t2. We have

Y 2 = t8 + 2t6 + t4,

Y 3 = t12 + 3t10 + 3t8 + t6,

X2Y = t10 + t8,

and hence we have

Y 3 − 3X2Y −X4 −X2 = 0.

So the set is

V(Y 3 − 3X2Y −X4 −X2) ⊆ C2.

(2) Parametrise the following varieties and make a guess at their dimension:
(a) The only (x, y) ∈ C2 with x+y = x−y = 0 is (0, 0). So the parametri-

sation is just {(0, 0)}, and this has dimension 0.
(b) We have X = Y 2 and Z = X2 + Y . So if we let Y = t, then from the

first we have X = t2, and then the second gives Z = t4 + t. So the
parametrisation is

{(t2, t, t4 + t) | t ∈ C}.
This is one-dimensional.
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(c) We have Y = X2 − Z3; beyond that, we have no more information.
So we must use variables for both X and Z, giving a parametrisation

{(s, s2 − t3, t) | s, t ∈ C}.
This is two-dimensional.

(d) First, note that the only solution with any component equal to 0 is
the origin. The second two equations give that

X = 0 ⇔ Y = 0 ⇔ Z = 0;

now look at the first. If W = 0, this implies that one of X,Y, Z is zero
(thus implying they all are), and if the X,Y, Z are zero, then W = 0.
So assume W,X, Y, Z are all non-zero. Then we can write the first
equation as

X

W
=

W

Y Z
=: t.

From this, we get

X = tW, W = tY Z,

and hence satisfying the first part makes points of the form

(t2Y Z, Y, Z, tY Z).

Then using X2 = Y 3, we get

t4Y 2Z2 = Y 3

and hence Y = t4Z2 (we can divide through by Y 2 since it is non-zero).
So now we have points of the form

(t6Z3, t4Z2, Z, t5Z3).

Finally, using Y 2 = Z5, we have that

t8Z4 = Z5,

and hence Z = t8. So we have a parametrisation

{(t30, t20, t8, t29) | t ∈ C}.
This is one-dimensional.

(3) Describe the irreducible components of the following reducible varieties:
(a) We have

V(XY ) = V(X) ∪ V(Y ) ⊆ C2.

The lines V(X) ⊆ C2 and V(Y ) ⊆ C2 are the irreducible components.
(b) We have

V(XY ) = V(X) ∪ V(Y ) ⊆ C3.

as before. However, V(X) ⊆ C3 and V(Y ) ⊆ C3 are now planes, and
these planes are the irreducible components.

(c) The first polynomial implies that either X = 0 or Z = 0. If X = 0,
then the second polynomial implies Y = 0, and Z is free; so we have
a component V(X,Y ). This is an irreducible line.
If Z = 0, then the second polynomial is unchanged. This polynomial
is zero if either Y = 0 or X − 1 = 0. So we have two more irreducible
lines as components, namely V(Y, Z) and V(X − 1, Z).

(d) V(Y 2 −X4, Y − ZX) ⊆ C3
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(4) We have

Ideal Maximal? Prime? Radical? Radical
(0) X X X (6)
(2) X X X (2)
(6) X X X (6)
(18) X X X (6)
(5) X X X (5) = R

(5) Given an ascending chain of ideals

I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · · ,
let

I =
⋃
n∈N

In.

This I is an ideal of R, and so we have

I = (f1, . . . , fm)

for some fi ∈ R. Each fi is in Ini for some ni ∈ N, and hence if N =
max{ni}, then we have

I = IN = IN+1 = · · · .
(6) Suppose I 6= (0), and let a ∈ N be its smallest positive element. Clearly

we have (a) ⊆ I. Now suppose (for a contradiction) that there exists some
b ∈ Z such that b ∈ I but b /∈ (a).

We can then apply the Euclidean algorithm to find q ∈ Z and 0 < r < a
such that

b = qa + r.

(We have r > 0 since b /∈ (a).) But then since b ∈ I and qa ∈ I, we have
r = b− qa ∈ I. So we’ve found an element r ∈ N of the ideal smaller than
a, giving our contradiction.

(7) Recall that√
(I) ≡ Rad(I) = {r | rninI for some n ∈ N}.

We need first to show that Rad(I) is an additive subgroup of R. Suppose
r, s ∈ Rad(I). We want to show that r+s ∈ Rad(I) and that −r ∈ Rad(I).
The second is easiest: suppose rm ∈ I. Then we have

(−r)2m = (−1)2m(rm)2 = (rm)2 ∈ I,

and hence −r ∈ Rad(I). Now suppose that sn ∈ I. We have

(r + s)m+n =

m+n∑
i=0

(
m + n

i

)
rism+n−i

=

m∑
i=0

(
m + n

i

)
rism+n−i +

m+n∑
i=m+1

(
m + n

i

)
rism+n−i

= sn
m∑
i=0

(
m + n

i

)
rism−i + rm

m+n∑
i=m+1

(
m + n

i

)
ri−msm+n−i ∈ I.

So r + s ∈ Rad(I).
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Now all we need to show that for x ∈ R and r ∈ Rad(I), we have
xr ∈ Rad(I). If rn ∈ I, then we have

(xr)n = xnrn,

and hence (since xn ∈ R and rn ∈ I) we have (xr)n ∈ I and hence xr ∈
Rad(I).

So Rad(I) is an ideal as required.


