HW 1

(1) (a) Let $X=t^{3}$ and $Y=t^{5}$. Then we have

$$
X^{5}=t^{15}=Y^{3}
$$

and hence

$$
\left\{\left(t^{3}, t^{5}\right) \mid t \in \mathbb{C}\right\}=\mathbb{V}\left(X^{5}-Y^{3}\right) \subseteq \mathbb{C}^{2}
$$

(b) Firstly, note that since $t \mapsto t^{2}$ is a surjective map in \mathbb{C}, this set is equivalent to

$$
\left\{\left(s, s^{2}\right) \mid s \in \mathbb{C}\right\}
$$

Then this set is clearly equal to

$$
\mathbb{V}\left(Y-X^{2}\right) \subseteq \mathbb{C}^{2}
$$

(c) We have

$$
\begin{aligned}
& \left\{\left(t^{2}-2 t, t^{3}-3 t^{2}+3 t+2\right) \mid t \in \mathbb{C}\right\} \\
= & \left\{\left((t-1)^{2}-1,(t-1)^{3}+4\right) \mid t \in \mathbb{C}\right\} \\
= & \left\{\left(s^{2}-1, t^{3}+4\right) \mid s \in \mathbb{C}\right\} .
\end{aligned}
$$

Then if $X=s^{2}-1$ and $Y=t^{3}+4$, we have

$$
(X+1)^{3}=(Y-4)^{2}
$$

and hence the set is

$$
\mathbb{V}\left((X+1)^{3}-(Y-4)^{2}\right) \subseteq \mathbb{C}^{2}
$$

(d) For this question, set $X=t^{3}$ and $Y=t^{4}+t^{2}$. We have

$$
\begin{aligned}
Y^{2} & =t^{8}+2 t^{6}+t^{4} \\
Y^{3} & =t^{12}+3 t^{10}+3 t^{8}+t^{6} \\
X^{2} Y & =t^{10}+t^{8}
\end{aligned}
$$

and hence we have

$$
Y^{3}-3 X^{2} Y-X^{4}-X^{2}=0
$$

So the set is

$$
\mathbb{V}\left(Y^{3}-3 X^{2} Y-X^{4}-X^{2}\right) \subseteq \mathbb{C}^{2}
$$

(2) Parametrise the following varieties and make a guess at their dimension:
(a) The only $(x, y) \in \mathbb{C}^{2}$ with $x+y=x-y=0$ is $(0,0)$. So the parametrisation is just $\{(0,0)\}$, and this has dimension 0 .
(b) We have $X=Y^{2}$ and $Z=X^{2}+Y$. So if we let $Y=t$, then from the first we have $X=t^{2}$, and then the second gives $Z=t^{4}+t$. So the parametrisation is

$$
\left\{\left(t^{2}, t, t^{4}+t\right) \mid t \in \mathbb{C}\right\}
$$

This is one-dimensional.
(c) We have $Y=X^{2}-Z^{3}$; beyond that, we have no more information. So we must use variables for both X and Z, giving a parametrisation

$$
\left\{\left(s, s^{2}-t^{3}, t\right) \mid s, t \in \mathbb{C}\right\}
$$

This is two-dimensional.
(d) First, note that the only solution with any component equal to 0 is the origin. The second two equations give that

$$
X=0 \Leftrightarrow Y=0 \Leftrightarrow Z=0
$$

now look at the first. If $W=0$, this implies that one of X, Y, Z is zero (thus implying they all are), and if the X, Y, Z are zero, then $W=0$. So assume W, X, Y, Z are all non-zero. Then we can write the first equation as

$$
\frac{X}{W}=\frac{W}{Y Z}=: t
$$

From this, we get

$$
X=t W, \quad W=t Y Z
$$

and hence satisfying the first part makes points of the form

$$
\left(t^{2} Y Z, Y, Z, t Y Z\right)
$$

Then using $X^{2}=Y^{3}$, we get

$$
t^{4} Y^{2} Z^{2}=Y^{3}
$$

and hence $Y=t^{4} Z^{2}$ (we can divide through by Y^{2} since it is non-zero). So now we have points of the form

$$
\left(t^{6} Z^{3}, t^{4} Z^{2}, Z, t^{5} Z^{3}\right)
$$

Finally, using $Y^{2}=Z^{5}$, we have that

$$
t^{8} Z^{4}=Z^{5}
$$

and hence $Z=t^{8}$. So we have a parametrisation

$$
\left\{\left(t^{30}, t^{20}, t^{8}, t^{29}\right) \mid t \in \mathbb{C}\right\}
$$

This is one-dimensional.
(3) Describe the irreducible components of the following reducible varieties:
(a) We have

$$
\mathbb{V}(X Y)=\mathbb{V}(X) \cup \mathbb{V}(Y) \subseteq \mathbb{C}^{2}
$$

The lines $\mathbb{V}(X) \subseteq \mathbb{C}^{2}$ and $\mathbb{V}(Y) \subseteq \mathbb{C}^{2}$ are the irreducible components.
(b) We have

$$
\mathbb{V}(X Y)=\mathbb{V}(X) \cup \mathbb{V}(Y) \subseteq \mathbb{C}^{3}
$$

as before. However, $\mathbb{V}(X) \subseteq \mathbb{C}^{3}$ and $\mathbb{V}(Y) \subseteq \mathbb{C}^{3}$ are now planes, and these planes are the irreducible components.
(c) The first polynomial implies that either $X=0$ or $Z=0$. If $X=0$, then the second polynomial implies $Y=0$, and Z is free; so we have a component $\mathbb{V}(X, Y)$. This is an irreducible line.
If $Z=0$, then the second polynomial is unchanged. This polynomial is zero if either $Y=0$ or $X-1=0$. So we have two more irreducible lines as components, namely $\mathbb{V}(Y, Z)$ and $\mathbb{V}(X-1, Z)$.
(d) $\mathbb{V}\left(Y^{2}-X^{4}, Y-Z X\right) \subseteq \mathbb{C}^{3}$
(4) We have

Ideal	Maximal?	Prime?	Radical?	Radical
(0)	X	X	X	(6)
(2)	\checkmark	\checkmark	\checkmark	(2)
(6)	X	X	\checkmark	(6)
(18)	X	X	X	(6)
(5)	X	X	\checkmark	$(5)=\mathrm{R}$

(5) Given an ascending chain of ideals

$$
I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{n} \subseteq \cdots,
$$

let

$$
I=\bigcup_{n \in \mathbb{N}} I_{n} .
$$

This I is an ideal of R, and so we have

$$
I=\left(f_{1}, \ldots, f_{m}\right)
$$

for some $f_{i} \in R$. Each f_{i} is in $I_{n_{i}}$ for some $n_{i} \in \mathbb{N}$, and hence if $N=$ $\max \left\{n_{i}\right\}$, then we have

$$
I=I_{N}=I_{N+1}=\cdots
$$

(6) Suppose $I \neq(0)$, and let $a \in \mathbb{N}$ be its smallest positive element. Clearly we have $(a) \subseteq I$. Now suppose (for a contradiction) that there exists some $b \in \mathbb{Z}$ such that $b \in I$ but $b \notin(a)$.

We can then apply the Euclidean algorithm to find $q \in \mathbb{Z}$ and $0<r<a$ such that

$$
b=q a+r .
$$

(We have $r>0$ since $b \notin(a)$.) But then since $b \in I$ and $q a \in I$, we have $r=b-q a \in I$. So we've found an element $r \in \mathbb{N}$ of the ideal smaller than a, giving our contradiction.
(7) Recall that

$$
\sqrt{(} I) \equiv \operatorname{Rad}(I)=\left\{r \mid r^{n} i n I \text { for some } n \in \mathbb{N}\right\}
$$

We need first to show that $\operatorname{Rad}(I)$ is an additive subgroup of R. Suppose $r, s \in \operatorname{Rad}(I)$. We want to show that $r+s \in \operatorname{Rad}(I)$ and that $-r \in \operatorname{Rad}(I)$. The second is easiest: suppose $r^{m} \in I$. Then we have

$$
(-r)^{2 m}=(-1)^{2 m}\left(r^{m}\right)^{2}=\left(r^{m}\right)^{2} \in I
$$

and hence $-r \in \operatorname{Rad}(I)$. Now suppose that $s^{n} \in I$. We have

$$
\begin{aligned}
(r+s)^{m+n} & =\sum_{i=0}^{m+n}\binom{m+n}{i} r^{i} s^{m+n-i} \\
& =\sum_{i=0}^{m}\binom{m+n}{i} r^{i} s^{m+n-i}+\sum_{i=m+1}^{m+n}\binom{m+n}{i} r^{i} s^{m+n-i} \\
& =s^{n} \sum_{i=0}^{m}\binom{m+n}{i} r^{i} s^{m-i}+r^{m} \sum_{i=m+1}^{m+n}\binom{m+n}{i} r^{i-m} s^{m+n-i} \in I
\end{aligned}
$$

So $r+s \in \operatorname{Rad}(I)$.

Now all we need to show that for $x \in R$ and $r \in \operatorname{Rad}(I)$, we have $x r \in \operatorname{Rad}(I)$. If $r^{n} \in I$, then we have

$$
(x r)^{n}=x^{n} r^{n}
$$

and hence (since $x^{n} \in R$ and $r^{n} \in I$) we have $(x r)^{n} \in I$ and hence $x r \in$ $\operatorname{Rad}(I)$.

So $\operatorname{Rad}(I)$ is an ideal as required.

