HW 1

(1) (a) Let
$$X = t^3$$
 and $Y = t^5$. Then we have $X^5 = t^{15} = Y^3$,

and hence

$$\{(t^3,t^5) \mid t \in \mathbb{C}\} = \mathbb{V}(X^5 - Y^3) \subseteq \mathbb{C}^2.$$

(b) Firstly, note that since $t\mapsto t^2$ is a surjective map in $\mathbb{C},$ this set is equivalent to

$$\{(s,s^2) \mid s \in \mathbb{C}\}.$$

Then this set is clearly equal to

$$\mathbb{V}(Y - X^2) \subseteq \mathbb{C}^2.$$

(c) We have

$$\{(t^2 - 2t, t^3 - 3t^2 + 3t + 2) \mid t \in \mathbb{C}\}\$$

= \{((t - 1)^2 - 1, (t - 1)^3 + 4) \mid t \in \mathbb{C}\}
= \{(s^2 - 1, t^3 + 4) \mid s \in \mathbb{C}\}.

Then if $X = s^2 - 1$ and $Y = t^3 + 4$, we have $(X + 1)^3 = (Y - 4)^2$,

 $(\Lambda+1) = (I -$

and hence the set is

$$\mathbb{V}((X+1)^3 - (Y-4)^2) \subseteq \mathbb{C}^2.$$

(d) For this question, set $X = t^3$ and $Y = t^4 + t^2$. We have

$$\begin{split} Y^2 &= t^8 + 2t^6 + t^4, \\ Y^3 &= t^{12} + 3t^{10} + 3t^8 + t^6, \\ X^2 Y &= t^{10} + t^8, \end{split}$$

and hence we have

$$Y^3 - 3X^2Y - X^4 - X^2 = 0.$$

So the set is

$$\mathbb{V}(Y^3 - 3X^2Y - X^4 - X^2) \subseteq \mathbb{C}^2.$$

- (2) Parametrise the following varieties and make a guess at their dimension:
 - (a) The only (x, y) ∈ C² with x + y = x y = 0 is (0, 0). So the parametrisation is just {(0,0)}, and this has dimension 0.
 (b) We have X = Y² and Z = X² + Y. So if we let Y = t, then from the
 - (b) We have $X = Y^2$ and $Z = X^2 + Y$. So if we let Y = t, then from the first we have $X = t^2$, and then the second gives $Z = t^4 + t$. So the parametrisation is

$$\{(t^2, t, t^4 + t) \mid t \in \mathbb{C}\}.$$

This is one-dimensional.

(c) We have $Y = X^2 - Z^3$; beyond that, we have no more information. So we must use variables for both X and Z, giving a parametrisation

$$\{(s, s^2 - t^3, t) \mid s, t \in \mathbb{C}\}.$$

This is two-dimensional.

(d) First, note that the only solution with any component equal to 0 is the origin. The second two equations give that

 $X = 0 \Leftrightarrow Y = 0 \Leftrightarrow Z = 0;$

now look at the first. If W = 0, this implies that one of X, Y, Z is zero (thus implying they all are), and if the X, Y, Z are zero, then W = 0. So assume W, X, Y, Z are all non-zero. Then we can write the first equation as

$$\frac{X}{W} = \frac{W}{YZ} =: t.$$

From this, we get

$$X = tW, \quad W = tYZ,$$

and hence satisfying the first part makes points of the form

$$(t^2YZ, Y, Z, tYZ)$$

 $t^2 = Y^3$, we get

Then using X³, we get $t^4 Y^2 Z^2 = Y^3$

and hence $Y = t^4 Z^2$ (we can divide through by Y^2 since it is non-zero). So now we have points of the form

$$(t^6 Z^3, t^4 Z^2, Z, t^5 Z^3).$$

$$t^8 Z^4 = Z^5,$$

and hence $Z = t^8$. So we have a parametrisation

$$\{(t^{30}, t^{20}, t^8, t^{29}) \mid t \in \mathbb{C}\}.$$

This is one-dimensional.

- (3) Describe the irreducible components of the following reducible varieties:
 - (a) We have

$$\mathbb{V}(XY) = \mathbb{V}(X) \cup \mathbb{V}(Y) \subseteq \mathbb{C}^2.$$

The lines $\mathbb{V}(X) \subseteq \mathbb{C}^2$ and $\mathbb{V}(Y) \subseteq \mathbb{C}^2$ are the irreducible components. (b) We have

$$\mathbb{V}(XY) = \mathbb{V}(X) \cup \mathbb{V}(Y) \subseteq \mathbb{C}^3.$$

as before. However, $\mathbb{V}(X) \subseteq \mathbb{C}^3$ and $\mathbb{V}(Y) \subseteq \mathbb{C}^3$ are now *planes*, and these planes are the irreducible components.

- (c) The first polynomial implies that either X = 0 or Z = 0. If X = 0, then the second polynomial implies Y = 0, and Z is free; so we have a component $\mathbb{V}(X, Y)$. This is an irreducible line.
 - If Z = 0, then the second polynomial is unchanged. This polynomial is zero if either Y = 0 or X - 1 = 0. So we have two more irreducible lines as components, namely $\mathbb{V}(Y, Z)$ and $\mathbb{V}(X - 1, Z)$.

(d)
$$\mathbb{V}(Y^2 - X^4, Y - ZX) \subseteq \mathbb{C}^3$$

⁽⁴⁾ We have

Ideal	Maximal?	Prime?	Radical?	Radical
(0)	Х	Х	Х	(6)
(2)	\checkmark	\checkmark	\checkmark	(2)
(6)	Х	Х	\checkmark	(6)
(18)	Х	Х	Х	(6)
(5)	Х	Х	\checkmark	(5) = R

(5) Given an ascending chain of ideals

 $I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n \subseteq \cdots,$

 let

$$I = \bigcup_{n \in \mathbb{N}} I_n.$$

This I is an ideal of R, and so we have

$$I = (f_1, \ldots, f_m)$$

for some $f_i \in R$. Each f_i is in I_{n_i} for some $n_i \in \mathbb{N}$, and hence if $N = \max\{n_i\}$, then we have

$$I=I_N=I_{N+1}=\cdots.$$

(6) Suppose $I \neq (0)$, and let $a \in \mathbb{N}$ be its smallest positive element. Clearly we have $(a) \subseteq I$. Now suppose (for a contradiction) that there exists some $b \in \mathbb{Z}$ such that $b \in I$ but $b \notin (a)$.

We can then apply the Euclidean algorithm to find $q \in \mathbb{Z}$ and 0 < r < a such that

$$b = qa + r.$$

(We have r > 0 since $b \notin (a)$.) But then since $b \in I$ and $qa \in I$, we have $r = b - qa \in I$. So we've found an element $r \in \mathbb{N}$ of the ideal smaller than a, giving our contradiction.

(7) Recall that

$$\sqrt{(I)} \equiv \operatorname{Rad}(I) = \{r \mid r^n inI \text{ for some } n \in \mathbb{N}\}.$$

We need first to show that $\operatorname{Rad}(I)$ is an additive subgroup of R. Suppose $r, s \in \operatorname{Rad}(I)$. We want to show that $r+s \in \operatorname{Rad}(I)$ and that $-r \in \operatorname{Rad}(I)$. The second is easiest: suppose $r^m \in I$. Then we have

$$(-r)^{2m} = (-1)^{2m} (r^m)^2 = (r^m)^2 \in I,$$

and hence $-r \in \operatorname{Rad}(I)$. Now suppose that $s^n \in I$. We have

$$(r+s)^{m+n} = \sum_{i=0}^{m+n} \binom{m+n}{i} r^i s^{m+n-i}$$

= $\sum_{i=0}^m \binom{m+n}{i} r^i s^{m+n-i} + \sum_{i=m+1}^{m+n} \binom{m+n}{i} r^i s^{m+n-i}$
= $s^n \sum_{i=0}^m \binom{m+n}{i} r^i s^{m-i} + r^m \sum_{i=m+1}^{m+n} \binom{m+n}{i} r^{i-m} s^{m+n-i} \in I.$
So $r+s \in \operatorname{Red}(I)$

So $r + s \in \operatorname{Rad}(I)$.

HW 1

Now all we need to show that for $x \in R$ and $r \in \text{Rad}(I)$, we have $xr \in \text{Rad}(I)$. If $r^n \in I$, then we have

$$(xr)^n = x^n r^n,$$

and hence (since $x^n \in R$ and $r^n \in I$) we have $(xr)^n \in I$ and hence $xr \in \operatorname{Rad}(I)$.

So $\operatorname{Rad}(I)$ is an ideal as required.

4