HW 1

- (1) Show that the following sets are varieties by writing them in the standard notation $\mathbb{V}(\{F_i\}_{i \in I}) \subset \mathbb{C}^n$.
 - (a) $\{(t^3, t^5) \mid t \in \mathbb{C}\}$

 - (b) { $(t^2, t^4) | t \in \mathbb{C}$ } (c) { $(t^2 2t, t^3 3t^2 + 3t + 2) | t \in \mathbb{C}$ }
 - (d) $\{(t^3, t^4 + t^2) \mid t \in \mathbb{C}\}$
- (2) Parametrise the following varieties and make a guess at their dimension: (a) $\mathbb{V}(X - Y, X + Y) \subseteq \mathbb{C}^2$

 - (a) $\mathbb{V}(X^2 X, X^2 + Y Z) \subseteq \mathbb{C}^3$ (b) $\mathbb{V}(X^2 Z^3 Y) \subseteq \mathbb{C}^3$ (c) $\mathbb{V}(X^2 Z^3 Y) \subseteq \mathbb{C}^3$ (d) $\mathbb{V}(XYZ W^2, X^2 Y^3, Y^2 Z^5) \subseteq \mathbb{C}^4$
- (3) Describe the irreducible components of the following reducible varieties: (a) $\mathbb{V}(XY) \subseteq \mathbb{C}^2$
 - (b) $\mathbb{V}(XY) \subseteq \mathbb{C}^3$
 - (c) $\mathbb{V}(XZ, Y YX) \subseteq \mathbb{C}^3$
 - (d) $\mathbb{V}(Y^2 X^4, Y ZX) \subseteq \mathbb{C}^3$
- (4) Let $R = \mathbb{Z}/36\mathbb{Z}$. Determine whether the following ideals are prime, maximal or radical, and if they are not radical, determine their radical.
 - (a) (0)
 - (b) (2)
 - (c) (6)
 - (d) (18)
 - (e) (5)
- (5) Let R be a ring. Show that if every ideal of R is finitely generated, then Rmust be Noetherian.
- (6) Show that \mathbb{Z} is Noetherian. (Hint: take any ideal $I \subseteq \mathbb{Z}$, and show that it is generated by its smallest non-zero element.)
- (7) Show that the radical \sqrt{I} of an ideal I is an ideal.