Topics in modern geometry

Exercise sheet 2

Solution 1.

Let $a, b \in I_{n}$ so there are degree n polynomials $f, g \in I$ with leading coefficients a and b respectively. Then $f+g$ has leading coefficient $a+b$. If $r \in R$ then $r f$ has leading coefficient $f a$. Finally, $X f$ is degree $n+1$ and has leading coefficient a.

Solution 2.

$\mathbb{V}(f)=\{(0,0)\}$. The polynomials that vanish at $(0,0)$ are exactly those with no constant term so $\mathbb{I}(\mathbb{V}(f))=(X, Y)$.

Solution 3.

In \mathbb{C}, we have the factorisation $f=(X+i)(X-i)$ and so the two roots of f are $\pm i$. For a polynomial g :

$$
\begin{aligned}
g(i) & =0 \text { if and only if }(X-i) \mid g \\
g(-i) & =0 \text { if and only if }(X+i) \mid g
\end{aligned}
$$

so

$$
\text { so } g \in \mathbb{I}(\mathbb{V}(f)) \Leftrightarrow(X-i) \mid g \text { and }(X+i)|g \Leftrightarrow f| g \Leftrightarrow g \in(f) .
$$

Solution 4.

Let $(x, y, z) \in \mathbb{V}(J)$. First note that $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2(x y+x z+y z)$ and so $x+y+z=0$. Now if we substitute $z=-x-y$ into either equation we obtain $x^{2}+x y-y^{2}=0$. Solving for y we have $y=1 / 2(-1 \pm i \sqrt{3}) x$. Finally after calculating z we obtain the two lines parameterized by t

$$
\begin{aligned}
& (1,1 / 2(-1+i \sqrt{3}), 1 / 2(-1-i \sqrt{3})) t \\
& (1,1 / 2(-1-i \sqrt{3}), 1 / 2(-1+i \sqrt{3})) t
\end{aligned}
$$

We have noted that if $(x, y, z) \in \mathbb{V}(J)$ then $x+y+z=0$. Therefore $X+Y+Z \in$ $\mathbb{I}(\mathbb{V}(J))$, but since $X+Y+Z$ is homogeneous of degree 1 and the generators of J are both homogeneous of degree 2 , we can conclude that $X+Y+Z \notin J$.

Solution 5.

$W_{1} \subseteq V=V_{1} \cup \cdots \cup V_{s}$ so $W_{1}=\bigcup_{i=1}^{s}\left(W_{1} \cap V_{i}\right)$. As W_{1} is irreducible we must have $W_{1}=W_{1} \cap V_{i}$ for some i, say (after reordering) $i=1$, and then $W_{1} \subseteq V_{1}$. Similarly for some j we must have $V_{1} \subseteq W_{j}$, but as this implies $W_{1} \subseteq W_{j}$ we must have $j=1$ by the non-degeneracy. We have now shown that $V_{1}=W_{1}$ and result follows by induction on s.

Solution 6.

Using the hint K / \bar{k} is a field extension. Let $\lambda \in K$. If λ were transcendental over \bar{k} then K would contain an isomorphic image of $k[X]$ contradicting $k \cong K$. Thus λ satisfies a minimal polynomial $f \in \bar{k}[X]$. Since \bar{k} is algebraically closed $\lambda \in \bar{k}$ and hence φ is surjective.

Solution 7.

1. Let I be a prime ideal. If $f^{m} \in I$ for some integer m then either $f \in I$ or $f^{m-1} \in I$. Proceeding by induction we conclude that $f \in I$.
2. Let $M \subset R$ be a maximal ideal. Let $f g \in M$ but $f \notin M$. As $M \nsubseteq(M, f)$, we can conclude that $1 \in(M, f)$. Therefore $g \in(M g, f g) \subseteq M$.

Solution 8.

Let I be primary and $f g \in I$. Assume that $f \notin \operatorname{rad} I$ so that certainly $f \notin I$. Then $g^{m} \in I$ for some integer m and hence $g \in \operatorname{rad} I$.

Solution 9.

1. If $f \in I$ and $g \in J$ then $f g \in I$ and $f g \in J$. That is, $f g \in I \cap J$.
2. Let $x \in \mathbb{V}(I J)$ so $f(x) g(x)=0$ for all $f \in I$ and for all $g \in J$. If $f(x)=0$ for all $f \in I$ then $x \in \mathbb{V}(I)$. If, on the other hand, there is some $f \in I$ for which $f(x) \neq 0$ then since $f(x) g(x)=0$ for all $g \in J$ then $g(x)=0$ for all $g \in J$, thus $x \in \mathbb{V}(J)$.

Conversely, let $x \in \mathbb{V}(I) \cup \mathbb{V}(J)$. Either $f(x)=0$ for all $f \in I$ or $g(x)=0$ for all $g \in J$. Therefore $f(x) g(x)=0$ for all $f \in I$ and for all $g \in J$. That is, $x \in \mathbb{V}(I J)$.
3. If $x \in \mathbb{V}(I) \cup \mathbb{V}(J)$ then either $f(x)=0$ for all $f \in I$ or $f(x)=0$ for all $f \in J$ so certainly $f(x)=0$ for all $f \in I \cap J$.

Conversely, since $I J \subseteq I \cap J$ by part 1 we have $\mathbb{V}(I \cap J) \subseteq \mathbb{V}(I J)=\mathbb{V}(I) \cup \mathbb{V}(J)$ by part 2.
4. Take for example $I=J=(X) \subseteq \mathbb{R}[X]$. Then $I J=\left(X^{2}\right) \neq(X)=I \cap J$.

