Topics in modern geometry

Exercise sheet 2

Solution 1.

Let $a, b \in I_n$ so there are degree n polynomials $f, g \in I$ with leading coefficients a and b respectively. Then f + g has leading coefficient a + b. If $r \in R$ then rf has leading coefficient fa. Finally, Xf is degree n + 1 and has leading coefficient a.

Solution 2.

 $\mathbb{V}(f) = \{(0,0)\}$. The polynomials that vanish at (0,0) are exactly those with no constant term so $\mathbb{I}(\mathbb{V}(f)) = (X, Y)$.

Solution 3.

In \mathbb{C} , we have the factorisation f = (X + i)(X - i) and so the two roots of f are $\pm i$. For a polynomial q:

$$g(i) = 0 \text{ if and only if } (X - i)|g$$
$$g(-i) = 0 \text{ if and only if } (X + i)|g$$

so

so
$$g \in \mathbb{I}(\mathbb{V}(f)) \Leftrightarrow (X-i)|g$$
 and $(X+i)|g \Leftrightarrow f|g \Leftrightarrow g \in (f)$.

Solution 4.

Let $(x, y, z) \in V(J)$. First note that $(x + y + z)^2 = x^2 + y^2 + z^2 + 2(xy + xz + yz)$ and so x + y + z = 0. Now if we substitute z = -x - y into either equation we obtain $x^2 + xy - y^2 = 0$. Solving for y we have $y = \frac{1}{2}(-1 \pm i\sqrt{3})x$. Finally after calculating z we obtain the two lines parameterized by t

$$(1, \frac{1}{2}(-1+i\sqrt{3}), \frac{1}{2}(-1-i\sqrt{3}))t (1, \frac{1}{2}(-1-i\sqrt{3}), \frac{1}{2}(-1+i\sqrt{3}))t$$

We have noted that if $(x, y, z) \in \mathbb{V}(J)$ then x + y + z = 0. Therefore $X + Y + Z \in \mathbb{I}(\mathbb{V}(J))$, but since X + Y + Z is homogeneous of degree 1 and the generators of *J* are both homogeneous of degree 2, we can conclude that $X + Y + Z \notin J$.

Solution 5.

 $W_1 \subseteq V = V_1 \cup \cdots \cup V_s$ so $W_1 = \bigcup_{i=1}^s (W_1 \cap V_i)$. As W_1 is irreducible we must have $W_1 = W_1 \cap V_i$ for some *i*, say (after reordering) i = 1, and then $W_1 \subseteq V_1$. Similarly for some *j* we must have $V_1 \subseteq W_j$, but as this implies $W_1 \subseteq W_j$ we must have j = 1 by the non-degeneracy. We have now shown that $V_1 = W_1$ and result follows by induction on *s*.

Solution 6.

Using the hint K/\overline{k} is a field extension. Let $\lambda \in K$. If λ were transcendental over \overline{k} then K would contain an isomorphic image of k[X] contradicting $k \cong K$. Thus λ satisfies a minimal polynomial $f \in \overline{k}[X]$. Since \overline{k} is algebraically closed $\lambda \in \overline{k}$ and hence φ is surjective.

Solution 7.

- 1. Let *I* be a prime ideal. If $f^m \in I$ for some integer *m* then either $f \in I$ or $f^{m-1} \in I$. Proceeding by induction we conclude that $f \in I$.
- 2. Let $M \subset R$ be a maximal ideal. Let $fg \in M$ but $f \notin M$. As $M \subsetneq (M, f)$, we can conclude that $1 \in (M, f)$. Therefore $g \in (Mg, fg) \subseteq M$.

Solution 8.

Let *I* be primary and $fg \in I$. Assume that $f \notin \operatorname{rad} I$ so that certainly $f \notin I$. Then $g^m \in I$ for some integer *m* and hence $g \in \operatorname{rad} I$.

Solution 9.

- 1. If $f \in I$ and $g \in J$ then $fg \in I$ and $fg \in J$. That is, $fg \in I \cap J$.
- Let x ∈ V(IJ) so f(x)g(x) = 0 for all f ∈ I and for all g ∈ J. If f(x) = 0 for all f ∈ I then x ∈ V(I). If, on the other hand, there is some f ∈ I for which f(x) ≠ 0 then since f(x)g(x) = 0 for all g ∈ J then g(x) = 0 for all g ∈ J, thus x ∈ V(I).

Conversely, let $x \in \mathbb{V}(I) \cup \mathbb{V}(J)$. Either f(x) = 0 for all $f \in I$ or g(x) = 0 for all $g \in J$. Therefore f(x)g(x) = 0 for all $f \in I$ and for all $g \in J$. That is, $x \in \mathbb{V}(IJ)$.

3. If $x \in \mathbb{V}(I) \cup \mathbb{V}(J)$ then either f(x) = 0 for all $f \in I$ or f(x) = 0 for all $f \in J$ so certainly f(x) = 0 for all $f \in I \cap J$.

Conversely, since $IJ \subseteq I \cap J$ by part 1 we have $\mathbb{V}(I \cap J) \subseteq \mathbb{V}(IJ) = \mathbb{V}(I) \cup \mathbb{V}(J)$ by part 2.

4. Take for example $I = J = (X) \subseteq \mathbb{R}[X]$. Then $IJ = (X^2) \neq (X) = I \cap J$.