Topics in modern geometry

Exercise sheet 2

Exercise 1.

As in the proof of Hilbert's basis theorem, let R be a Noetherian ring and let I be an ideal of $R[X]$. For each n we define

$$
I_{n}=\left\{a_{n} \in R \mid \exists f=a_{n} X^{n}+a_{n-1} X^{n-1}+\cdots+a_{0} \in I\right\} .
$$

Show that each I_{n} is an ideal of R and that $I_{n} \subseteq I_{n+1}$.

Exercise 2.

Consider the ring $\mathbb{R}[X, Y]$ and the polynomial $f=X^{2}+Y^{2}$. Describe the variety $\mathbb{V}(f)$ and the ideal $\mathbb{I}(\mathbb{V}(f))$.

Exercise 3.

Consider the polynomial $f=X^{2}+1$. We have seen that in the reals $\mathbb{V}(f)=\varnothing$ so that $(f) \nsubseteq \mathbb{I}(\mathbb{V}(f))$. Show that as a polynomial in $\mathbb{C}[X]$. We have the equality $(f)=$ $\mathbb{I}(\mathbb{V}(f))$.

Exercise 4.

Consider the ideal $J=\left(X^{2}+Y^{2}+Z^{2}, X Y+X Z+Y Z\right) \subseteq \mathbb{C}[X, Y, Z]$. Describe the variety $\mathbb{V}(J)$ and show that $\mathbb{I}(\mathbb{V}(J)) \neq J$.

Exercise 5.

Let $V=V_{1} \cup V_{2} \cup \cdots \cup V_{s}=W_{1} \cup W_{2} \cup \cdots \cup W_{t}$ be two decompositions of V into unions of irreducible varieties with $V_{i} \not \subset V_{j}$ and $W_{i} \not \subset W_{j}$ for all $i \neq j$ (as in proposition 17). Prove that $s=t$ and that the W_{i} are simply a permutation of the V_{i}.

Exercise 6.

Let k be an algebraically closed field and let $K \cong k$. Show that any homomorphism $\varphi: k \rightarrow K$ must be an isomorphism.

Hint: Recall that a homomorphism of fields is necessarily injective. It may be helpful to consider the image of $k, \bar{k}=\varphi(k)$, as a subfield of K.

Exercise 7.

1. Prove that a prime ideal is radical.
2. Prove that a maximal ideal is prime.

Exercise 8.

Let I be and ideal of some ring R. We say that I is a primary ideal if whenever $f g \in I$ then either $f \in I$ or $g^{m} \in I$ for some positive integer m.

Prove that if I is a primary ideal then $\operatorname{rad} I$ is prime.

Exercise 9.

Let I and J be ideals of the polynomial ring $k\left[X_{1}, \ldots, X_{n}\right]$ over some field k.

1. Show that $I J \subseteq I \cap J$.
2. Show that $\mathbb{V}(I) \cup \mathbb{V}(J)=\mathbb{V}(I J)$.
3. Show that $\mathbb{V}(I) \cup \mathbb{V}(J)=\mathbb{V}(I \cap J)$.
4. Give an example of ideals I and J where $I J \neq I \cap J$.

Note that the product of ideals is given by: $I J=\{f g \mid f \in I$ and $g \in J\}$.

