Topics in modern geometry

Exercise sheet 3

Exercise 1.

Let $F: V \rightarrow W$ be an isomorphism of varieties.

- 1. Prove that if $V_1 \subseteq V$ is a subvariety then $W_1 = f(V_1) \subseteq W$ is a subvariety.
- 2. Show that $\dim_P V = \dim_{F(P)} W$ for any point $P \in V$.
- 3. Prove that if $\mathbb{C}[X_1, \ldots, X_n]$ is isomorphic to $\mathbb{C}[Y_1, \ldots, Y_m]$ then m = n.

Hint: It may be helpful to use the correspondence between morphisms of varieties and homomorphisms of coordinate rings.

Exercise 2.

Consider the ideals

$$I_{1} = (XY + Y^{2}, XZ + YZ)$$

$$I_{2} = (XY + Y^{2}, XZ + YZ + XYZ + Y^{2}Z)$$

$$I_{3} = (XY^{2} + Y^{3}, XZ + YZ)$$

- 1. Show that $I_1 = I_2 \supseteq I_3$.
- 2. Show that $\mathbb{V}(I_1) = \mathbb{V}(I_3)$.
- 3. Which of these ideals are radical ideals?

Exercise 3.

Consider the map

$$\begin{array}{rcl} \varphi : \mathbb{C} & \longrightarrow & \mathbb{C}^4 \\ t & \mapsto & (t^4, t^5, t^6, t^7) \end{array}$$

- 1. Show that $V = \varphi(\mathbb{C})$ is a variety.
- 2. Compute T_0V .
- 3. Show that there is no variety $W \subseteq \mathbb{C}^3$ isomorphic to V. You may use that fact that an isomorphism of varieties induces an isomorphism of tangent spaces.

Exercise 4.

Find all the singular points of $\mathbb{V}(X^2 - YZ)$.