Topics in modern geometry

Exercise sheet 3

Exercise 1.

Let $F: V \rightarrow W$ be an isomorphism of varieties.

1. Prove that if $V_{1} \subseteq V$ is a subvariety then $W_{1}=f\left(V_{1}\right) \subseteq W$ is a subvariety.
2. Show that $\operatorname{dim}_{P} V=\operatorname{dim}_{F(P)} W$ for any point $P \in V$.
3. Prove that if $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ is isomorphic to $\mathbb{C}\left[Y_{1}, \ldots, Y_{m}\right]$ then $m=n$.

Hint: It may be helpful to use the correspondence between morphisms of varieties and homomorphisms of coordinate rings.

Exercise 2.

Consider the ideals

$$
\begin{aligned}
& I_{1}=\left(X Y+Y^{2}, X Z+Y Z\right) \\
& I_{2}=\left(X Y+Y^{2}, X Z+Y Z+X Y Z+Y^{2} Z\right) \\
& I_{3}=\left(X Y^{2}+Y^{3}, X Z+Y Z\right)
\end{aligned}
$$

1. Show that $I_{1}=I_{2} \supsetneq I_{3}$.
2. Show that $\mathbb{V}\left(I_{1}\right)=\mathbb{V}\left(I_{3}\right)$.
3. Which of these ideals are radical ideals?

Exercise 3.

Consider the map

$$
\begin{array}{rll}
\varphi: \mathbb{C} & \longrightarrow \mathbb{C}^{4} \\
t & \mapsto & \left(t^{4}, t^{5}, t^{6}, t^{7}\right)
\end{array}
$$

1. Show that $V=\varphi(\mathbb{C})$ is a variety.
2. Compute $T_{0} V$.
3. Show that there is no variety $W \subseteq \mathbb{C}^{3}$ isomorphic to V. You may use that fact that an isomorphism of varieties induces an isomorphism of tangent spaces.

Exercise 4.

Find all the singular points of $\mathbb{V}\left(X^{2}-Y Z\right)$.

