MATH20222: Introduction to Geometry Sheet 1 — Semester 2 2020-21

Throughout \mathbb{E}^n denotes an *n*-dimensional Euclidean vector space with orthonormal basis $\mathcal{B} = (\mathbf{e}_1, \dots, \mathbf{e}_n)$.

1. Consider the following vectors in \mathbb{R}^2 :

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{a} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$,

- (a) Show that $\{\mathbf{e}_1, \mathbf{e}_2\}$ is a basis for \mathbb{R}^2 .
- (b) Show that $\{a, b\}$ is a basis for \mathbb{R}^2 .
- (c) Show that $\{\mathbf{e}_1, \mathbf{b}\}$ is *not* a basis for \mathbb{R}^2 .
- 2. State whether each of the following maps $\langle -, \rangle$ define an inner product on \mathbb{R}^3 .

[where
$$\mathbf{x} = (x_1, x_2, x_3)^{\mathsf{T}}, \mathbf{y} = (y_1, y_2, y_3)^{\mathsf{T}}$$
.]

- (a) $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + x_2 y_2$
- (b) $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + 3 x_2 y_2 + 5 x_3 y_3$
- (c) $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_2 + x_2 y_1 + x_3 y_3$
- 3. Let $\mathcal{B} = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ be an (ordered) orthonormal basis of \mathbb{E}^3 . Consider the ordered set of vectors $\mathcal{C} = (\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3)$ defined by \mathcal{B} via:
 - (a) $\mathbf{f}_1 = \mathbf{e}_2$, $\mathbf{f}_2 = \mathbf{e}_1$, $\mathbf{f}_3 = \mathbf{e}_3$
 - (b) $\mathbf{f}_1 = \mathbf{e}_1$, $\mathbf{f}_2 = \mathbf{e}_1 + 3\mathbf{e}_3$, $\mathbf{f}_3 = \mathbf{e}_3$
 - (c) $\mathbf{f}_1 = \mathbf{e}_1 \mathbf{e}_2$, $\mathbf{f}_2 = 3\mathbf{e}_1 3\mathbf{e}_2$, $\mathbf{f}_3 = \mathbf{e}_3$
 - (d) $\mathbf{f}_1 = \mathbf{e}_2$, $\mathbf{f}_2 = \mathbf{e}_1$, $\mathbf{f}_3 = \mathbf{e}_1 + \mathbf{e}_2 + \lambda \mathbf{e}_3$ where $\lambda \in \mathbb{R}$ is an arbitrary coefficient.

For each set of vectors, write down the transition matrix from \mathcal{B} to \mathcal{C} . Is \mathcal{C} a basis? Is \mathcal{C} orthogonal?

4. Consider the sets of polynomials

$$V = \left\{ ax^2 + bx + c \mid a, b, c \in \mathbb{R} \right\}, T = \left\{ x^2 + px + q \mid p, q \in \mathbb{R} \right\}$$

with the natural operations of addition and multiplication of polynomials.

- [You may assume these operations satisfy commutativity, associativity and distributivity.]
- (a) Which of these are vector spaces (over \mathbb{R}), and why?
- (b) Show the polynomials $1, x, x^2$ are linearly independent in *V*.
- (c) Calculate the dimension of *V*.
- 5. Let {**a**₁,..., **a**_{*m*}} be vectors of a vector space *V*. Show that if at least one of the vectors is equal to **0**, then they are linearly dependent.
- 6. Show that any three vectors in \mathbb{R}^2 must be linearly dependent.
- 7. Let $\{\mathbf{e}, \mathbf{f}, \mathbf{g}\}$ be vectors of \mathbb{E}^3 such that each has unit length and they are pairwise orthogonal with each other. Show explicitly that they form a basis for \mathbb{E}^3 .
- 8. Let $\{\mathbf{a}, \mathbf{b}, \mathbf{c}\}$ be vectors in \mathbb{E}^3 such that \mathbf{a}, \mathbf{b} have unit length and are orthogonal to each other, and \mathbf{c} has length $\sqrt{3}$ and forms the angle $\varphi = \arccos \frac{1}{\sqrt{3}}$ with \mathbf{a} and \mathbf{b} . Show that $\{\mathbf{a}, \mathbf{b}, \mathbf{c} - \mathbf{a} - \mathbf{b}\}$ forms an orthonormal basis for \mathbb{E}^3 .