MATH20222: Introduction to Geometry

Sheet 3 — Semester 2 2020-21

The exercises have been split into key and extra exercises: make sure you are comfortable with key exercises first as they cover important calculations or key geometric concepts.

We expect you to spend approx. 2 hours on exercises, don't worry about finishing them all.

Key exercises:

1. Consider the matrices

$$A = \begin{bmatrix} 5 & 1 \\ 4 & 5 \end{bmatrix} \quad , \quad B = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 3 & 3 \\ 6 & -6 & -6 \end{bmatrix}$$

For each matrix:

- (a) find the eigenvalues λ by finding the roots of the polynomial det $(M \lambda I)$,
- (b) calculate the corresponding eigenvectors.
- 2. Let $\mathcal{B} = (\mathbf{e}, \mathbf{f}, \mathbf{g})$ be an orthonormal basis in \mathbb{E}^3 . Define a linear operator *P* on \mathbb{E}^3 by

$$P(\mathbf{e}) = \mathbf{e}$$

$$P(\mathbf{f}) = \frac{\sqrt{2}}{2}\mathbf{f} + \frac{\sqrt{2}}{2}\mathbf{g}$$

$$P(\mathbf{g}) = -\frac{\sqrt{2}}{2}\mathbf{f} + \frac{\sqrt{2}}{2}\mathbf{g}$$

- (a) Write down the matrix $[P]_{\mathcal{B}}$.
- (b) Show *P* is an orthogonal operator that preserves orientation.
- (c) Find the axis and angle of rotation.
- 3. Let $\mathcal{B} = (\mathbf{e}_1, \mathbf{e}_2)$ be an orthonormal basis for \mathbb{E}^2 . Recall that the reflection operator *R* in the line spanned by \mathbf{e}_1 has matrix

$$[R]_{\mathcal{B}} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Let $\mathbf{x}_{\varphi} = P_{\varphi}(\mathbf{e}_1)$ be the vector obtained by rotating \mathbf{e}_1 by φ . Let R_{φ} be the linear operator that is the reflection operator in the line spanned by \mathbf{x}_{φ} .

- (a) Write R_{φ} as a composition of rotation operators and the reflection operator *R*.
- (b) Show that $R_{\varphi} = Q_{2\varphi}$.

Extra exercises:

- 4. Let \mathcal{B} be an orthonormal basis for \mathbb{E}^2 , recall that P_{φ} is the operator that rotates by φ . Show the following identities for matrices of rotation operators in \mathbb{E}^2 :
 - (a) $[P_{-\varphi}]_{\mathcal{B}} = ([P_{\varphi}]_{\mathcal{B}})^{\mathsf{T}} = ([P_{\varphi}]_{\mathcal{B}})^{-1}$

(b)
$$[P_{\varphi}]_{\mathcal{B}}[P_{\theta}]_{\mathcal{B}} = [P_{\varphi+\theta}]_{\mathcal{B}}$$

5. Let $\mathcal{B} = (\mathbf{e}, \mathbf{f}, \mathbf{g})$ be an orthonormal basis in \mathbb{E}^3 . Consider the linear operator P_1 in \mathbb{E}^3 defined by

$$P_1(\mathbf{e}) = \mathbf{f}$$
 $P_1(\mathbf{f}) = \mathbf{e}$ $P_1(\mathbf{g}) = \mathbf{g}.$

Also consider the linear operator P_2 that is the reflection operator in the plane spanned by **e** and **f**.

- (a) State whether P_1 and P_2 preserves orientation.
- (b) Define the operator $P = P_1 \circ P_2$ that applies the operator P_2 followed by the operator P_1 . Does *P* preserve orientation?
- (c) Show that *P* is a rotation operator. Find its axis and angle of rotation.
- 6. Let $\mathcal{B} = (\mathbf{e}_1, \mathbf{e}_2)$ be an orthonormal basis for \mathbb{E}^2 . Consider the linear operators P_1, P_2 on \mathbb{E}^2 defined by

$$P_1(\mathbf{e}_1) = \mathbf{e}_1$$
 $P_2(\mathbf{e}_1) = \mathbf{e}_1 - \mathbf{e}_2$
 $P_1(\mathbf{e}_2) = \mathbf{e}_1 + \mathbf{e}_2$ $P_2(\mathbf{e}_2) = \mathbf{e}_2$

- (a) Write down the matrices for P_1 , P_2 . Which of them are orthogonal operators?
- (b) Find all linear operators of the form $P = aP_1 + bP_2$ that are orthogonal (where $a, b \in \mathbb{R}$).
- (c) For each orthogonal *P*, write it as either a rotation operator P_{φ} or a reflection operator Q_{φ} .

7. Let $\mathbf{n} \in \mathbb{E}^3$ be a unit vector and consider the following operators on \mathbb{E}^3

$$P_1(\mathbf{x}) = \mathbf{x} - 2\langle \mathbf{n}, \mathbf{x} \rangle \mathbf{n}$$
, $P_2(\mathbf{x}) = 2\langle \mathbf{n}, \mathbf{x} \rangle \mathbf{n} - \mathbf{x}$.

- (a) Show both operators are orthogonal.
- (b) Show the first operator is a reflection, along with the plane it is a reflection through.
- (c) Show the second operator is a rotation. Find its axis and angle of rotation.

[(Almost) all of this question can be done without writing a matrix! You may find it helpful to consider the plane H_n whose normal vector is \mathbf{n} :¹]

$$H_{\mathbf{n}} = \left\{ \mathbf{x} \in \mathbb{E}^3 \mid \langle \mathbf{n}, \mathbf{x} \rangle = 0 \right\}$$

¹In general, any plane in \mathbb{E}^3 (or (n-1)-dimensional *hyperplane* in \mathbb{E}^n) can be written as the set of vectors orthogonal to a normal vector **n**.