LECTURE 12: BLOWING UP VARIETIES AT THE ORIGIN (THEORY AND EXAMPLES)

In this lecture, we will describe how to use our blow-up of \mathbb{C}^{n} at the origin from last lecture to blow up subvarieties of \mathbb{C}^{n} at the origin. We will describe the theory, and then give a selection of examples.

Our ultimate goal would be to blow up a given variety at an arbitrary subvariety (the origin, being just a point, is the most basic example of a subvariety).

1. Theory

Recall: we have the blowup of \mathbb{C}^{n} at the origin, given by

$$
B_{0}\left(\mathbb{C}^{n}\right)=\left\{(x, \ell) \in \mathbb{C}^{n} \times \mathbb{P}^{n-1} \mid x \in \ell\right\}
$$

and

$$
\begin{aligned}
\pi: \quad B_{0}\left(\mathbb{C}^{n}\right) & \longrightarrow \mathbb{C}^{n} \\
(x, \ell) & \longmapsto x .
\end{aligned}
$$

Definition 1. Let $V \subset \mathbb{C}^{n}$ be a variety, and let $0 \in V$. Then the blowup of V at 0 is the closure of the preimage

$$
\pi^{-1}(V \backslash\{0\})
$$

in $B_{0}\left(\mathbb{C}^{n}\right)$, together with the natural projection

$$
\pi: \overline{\pi^{-1}(V \backslash\{0\})} \rightarrow V
$$

We denote the blowup of V at 0 by

$$
B_{0}(V):=\overline{\pi^{-1}(V \backslash\{0\})} .
$$

The restriction of π to $B_{0}(V) \backslash \pi^{-1}(0)$ is an isomorphism onto $V \backslash\{0\}$.

2. Examples of blowups

2.1. Two lines crossing. We start with a very simple example. Consider the variety

$$
V=\mathbb{V}\left(X^{2}-Y^{2}\right) \subseteq \mathbb{C}^{2}
$$

This variety has a singularity at the origin, and hence is a good candidate to be blown up there.

We have our blowup map

$$
\begin{aligned}
\pi: \quad B_{0}\left(\mathbb{C}^{2}\right)=\left\{(\mathbf{x}, \ell) \in \mathbb{C}^{2} \times \mathbb{P}^{1} \mid \mathbf{x} \in \ell\right\} & \longrightarrow \mathbb{C}^{2} \\
(\mathbf{x}, \ell) & \longmapsto \mathbf{x} .
\end{aligned}
$$

Hence we have

$$
\pi^{-1}(V \backslash\{0\})=\left\{((x, y), \ell) \in \mathbb{C}^{2} \times \mathbb{P}^{1} \mid(x, y) \in \ell, x^{2}-y^{2}=0, \quad(x, y) \neq 0\right\}
$$

Using projective coordinates $\ell=[s: t]$:

$$
\pi^{-1}(V \backslash\{0\})=\left\{((x, y),[s: t]) \in \mathbb{C}^{2} \times \mathbb{P}^{1} \mid x t-y s=0, x^{2}-y^{2}=0, \quad(x, y) \neq 0\right\}
$$

To understand this as an affine variety, we intersect with an affine chart. Suppose $s \neq 0$: then we have (after renormalising to $s=1$) that $\pi^{-1}(V \backslash\{0\}) \cap \mathbb{A}_{s}$ is given by

$$
\left\{((x, y),[1: t]) \in \mathbb{C}^{2} \times \mathbb{P}^{1} \mid x t-y=0, x^{2}-y^{2}=0, \quad(x, y) \neq 0\right\}
$$

Since t can now range over all of \mathbb{C}, this is isomorphic to

$$
\left\{(x, y, t) \in \mathbb{C}^{3} \mid x t-y=0, x^{2}-y^{2}=0, \quad(x, y) \neq 0\right\}
$$

Using the first equation to give $y=x t$, we get

$$
\left\{(x, x t, t) \in \mathbb{C}^{3} \mid x^{2}-x^{2} t^{2}=0, \quad(x, t) \neq 0\right\}
$$

Since $x \neq 0$, we can divide the equation by x^{2} :

$$
\left\{(x, x t, t) \in \mathbb{C}^{3} \mid 1-t^{2}=0,(x, t) \neq 0\right\}
$$

The solutions to $1-t^{2}$ are ± 1 : so this variety breaks down as

$$
\left\{(x, x, 1) \in \mathbb{C}^{3} \mid x \neq 0\right\} \cup\left\{(x,-x,-1) \in \mathbb{C}^{3} \mid x \neq 0\right\}
$$

Taking the closure of this gives

$$
\{(x, x, 1) \mid x \in \mathbb{C}\} \cup\{(x,-x,-1) \mid x \in \mathbb{C}\}
$$

or

$$
\mathbb{V}(Y-X, Z-1) \cup \mathbb{V}(Y+X, Z+1) \subseteq \mathbb{C}^{3}
$$

2.2. Nodal cubic. The nodal cubic is given by

$$
V=\mathbb{V}\left(Y^{2}-X^{2}(X+1)\right)
$$

As before, using the blowup of \mathbb{C}^{2} at the origin, we get
$\pi^{-1}(V \backslash\{0\})=\left\{((x, y), \ell) \in \mathbb{C}^{2} \times \mathbb{P}^{1} \mid(x, y) \in \ell, y^{2}=x^{2}(x+1),(x, y) \neq 0\right\}$.
Using projective coordinates $\ell=[s: t]$:
$\pi^{-1}(V \backslash\{0\})=\left\{((x, y),[s: t]) \in \mathbb{C}^{2} \times \mathbb{P}^{1} \mid x t-y s=0, y^{2}=x^{2}(x+1),(x, y) \neq 0\right\}$.
Intersect with the affine chart where $s \neq 0$ (we choose our chart to give $y=x t$, since y is of lower degree than x in the equation): we get

$$
\left\{((x, y),[1: t]) \in \mathbb{C}^{2} \times \mathbb{P}^{1} \mid x t-y=0, y^{2}=x^{2}(x+1),(x, y) \neq 0\right\}
$$

This is isomorphic to

$$
\left\{(x, y, t) \in \mathbb{C}^{3} \mid y=x t, y^{2}=x^{2}(x+1),(x, y) \neq 0\right\}
$$

This gives

$$
\left\{(x, x t, t) \in \mathbb{C}^{3} \mid x^{2} t^{2}=x^{2}(x+1),(x, t) \neq 0\right\}
$$

Dividing through by x^{2} in the equation (since $x \neq 0$) gives

$$
\left\{(x, x t, t) \in \mathbb{C}^{3} \mid t^{2}=x+1, \quad(x, t) \neq 0\right\}
$$

and hence

$$
\left\{\left(t^{2}-1, t^{3}-t, t\right) \mid t \in \mathbb{C}, t \notin\{-1,0,1\}\right.
$$

(We get $t \neq \pm 1$ since $x \neq 0$, giving $t^{2} \neq 1$.) Closing this gives

$$
\left\{\left(t^{2}-1, t^{3}-t, t\right) \mid t \in \mathbb{C}\right\}
$$

LECTURE 12: BLOWING UP VARIETIES AT THE ORIGIN (THEORY AND EXAMPLES) 3
2.3. Cuspidal cubic. The cuspidal cubic is given by

$$
\mathbb{V}\left(Y^{2}-X^{3}\right) \subseteq \mathbb{C}^{2}
$$

As before, using the blowup of \mathbb{C}^{2} at the origin, we get

$$
\pi^{-1}(V \backslash\{0\})=\left\{((x, y), \ell) \in \mathbb{C}^{2} \times \mathbb{P}^{1} \mid(x, y) \in \ell, y^{2}=x^{3},(x, y) \neq 0\right\}
$$

Using projective coordinates $\ell=[s: t]$:

$$
\pi^{-1}(V \backslash\{0\})=\left\{((x, y),[s: t]) \in \mathbb{C}^{2} \times \mathbb{P}^{1} \mid x t-y s=0, y^{2}=x^{3},(x, y) \neq 0\right\}
$$

Intersect with the affine chart where $s \neq 0$ (we choose our chart to give $y=x t$, since y is of lower degree than x in the equation): we get

$$
\left\{((x, y),[1: t]) \in \mathbb{C}^{2} \times \mathbb{P}^{1} \mid x t-y=0, y^{2}=x^{3},(x, y) \neq 0\right\}
$$

This is isomorphic to

$$
\left\{(x, y, t) \in \mathbb{C}^{3} \mid y=x t, y^{2}=x^{3},(x, y) \neq 0\right\}
$$

This gives

$$
\left\{(x, x t, t) \in \mathbb{C}^{3} \mid x^{2} t^{2}=x^{3},(x, t) \neq 0\right\}
$$

Dividing through by x^{2} in the equation (since $x \neq 0$) gives

$$
\left\{(x, x t, t) \in \mathbb{C}^{3} \mid t^{2}=x,(x, t) \neq 0\right\}
$$

and hence

$$
\left\{\left(t^{2}, t^{3}, t\right) \mid t \in \mathbb{C}, t \neq 0\right\}
$$

Closing this gives

$$
\left\{\left(t^{2}, t^{3}, t\right) \mid t \in \mathbb{C}\right\}
$$

which is the twisted cubic. So the blowup of the cuspidal cubic is the twisted cubic (which we know is isomorphic to \mathbb{C} : so the cuspidal cubic and the complex line are birational).
2.4. Bowtie curve. The bowtie curve is given by

$$
\mathbb{V}\left(X^{4}+Y^{3}-X^{2} Y\right) \subseteq \mathbb{C}^{2}
$$

This is singular at the origin. As before, using the blowup of \mathbb{C}^{2} at the origin, we get

$$
\pi^{-1}(V \backslash\{0\})=\left\{((x, y), \ell) \in \mathbb{C}^{2} \times \mathbb{P}^{1} \mid(x, y) \in \ell, x^{2} y=x^{4}+y^{3},(x, y) \neq 0\right\}
$$

Using projective coordinates $\ell=[s: t]$:
$\pi^{-1}(V \backslash\{0\})=\left\{((x, y),[s: t]) \in \mathbb{C}^{2} \times \mathbb{P}^{1} \mid x t-y s=0, x^{2} y=x^{4}+y^{3},(x, y) \neq 0\right\}$.
Intersect with the affine chart where $s \neq 0$ (we choose our chart to give $y=x t$, since y is of lower degree than x in the equation): we get

$$
\left\{((x, y),[1: t]) \in \mathbb{C}^{2} \times \mathbb{P}^{1} \mid x t-y=0, x^{2} y=x^{4}+y^{3},(x, y) \neq 0\right\}
$$

This is isomorphic to

$$
\left\{(x, y, t) \in \mathbb{C}^{3} \mid y=x t, x^{2} y=x^{4}+y^{3},(x, y) \neq 0\right\}
$$

This gives

$$
\left\{(x, x t, t) \in \mathbb{C}^{3} \mid x^{3} t=x^{4}+x^{3} t^{3},(x, t) \neq 0\right\}
$$

Dividing through by x^{3} in the equation ($\operatorname{since} x \neq 0$) gives

$$
\left\{(x, x t, t) \in \mathbb{C}^{3} \mid t=x+t^{3},(x, t) \neq 0\right\}
$$

and hence (since $x=t-t^{3}$) we have

$$
\left\{\left(t-t^{3}, t^{2}-t^{4}, t\right) \mid t \in \mathbb{C}, t \notin\{-1,0,1\}\right\}
$$

Closing this gives

$$
\left\{\left(t-t^{3}, t^{2}-t^{4}, t\right) \mid t \in \mathbb{C}\right\}
$$

2.5. Cone. Let's try to explicitly blow up the cone

$$
V=\mathbb{V}\left(x^{2}+y^{2}-z^{2}\right) \subset \mathbb{C}^{3}
$$

at the origin.
Informally: the cone looks like a union of lines, tied together at the origin; tying together these lines at the origin causes the cone to have a singularity there. We want to desingularise the cone, and we do so by separating these lines, taking their disjoint union and hence forming a cylinder.

Explicitly: consider the blowup map

$$
\begin{aligned}
\pi: \quad B_{0}\left(\mathbb{C}^{3}\right)=\left\{(x, \ell) \in \mathbb{C}^{3} \times \mathbb{P}^{2} \mid x \in \ell\right\} & \longrightarrow \mathbb{C}^{3} \\
(x, \ell) & \longmapsto x .
\end{aligned}
$$

If we look at $\pi^{-1}(V \backslash\{0\})$, we get

$$
\left\{((x, y, z), \ell) \in \mathbb{C}^{3} \times \mathbb{P}^{2} \mid x \in \ell, x^{2}+y^{2}=z^{2}, \mathbf{x} \neq 0\right\}
$$

Using projective coordinates: we get

$$
\left\{\begin{array}{l|l}
((x, y, z),[t: u: v]) & \begin{array}{l}
x^{2}+y^{2}=z^{2} \\
x u-y t=0 \\
y v-z u=0 \\
x v-z t=0
\end{array}
\end{array}\right\}
$$

Intersect with the chart where $v \neq 0$: so we have

$$
\left\{\begin{array}{l|l}
((x, y, z),[t: u: 1]) & \begin{array}{c}
x^{2}+y^{2}=z^{2} \\
x u-y t=0 \\
y-z u=0 \\
x-z t=0
\end{array}
\end{array}\right\}
$$

This is isomorphic to

$$
\left\{\begin{array}{l|l}
(x, y, z, t, u) \in \mathbb{C}^{5} & \begin{array}{c}
x^{2}+y^{2}=z^{2} \\
x u-y t=0 \\
y-z u=0 \\
x-z t=0
\end{array}
\end{array}\right\}
$$

Using the second two equations:

$$
\left\{(z t, z u, z, t, u) \in \mathbb{C}^{5} \mid z^{2} t^{2}+z^{2} u^{2}=z^{2}\right\}
$$

Since $z \neq 0$, we can divide through by z^{2} :

$$
\left\{(z t, z u, z, t, u) \in \mathbb{C}^{5} \mid t^{2}+u^{2}=1\right\}
$$

We can project this into \mathbb{C}^{3} : we get the cylinder

$$
\left\{(z, t, u) \mid t^{2}+u^{2}=1, z \neq 0\right\}
$$

The preimage of $(0,0,0) \in \mathbb{V}\left(x^{2}+y^{2}-z^{2}\right)$ is the circle

$$
\left\{(0, t, u) \mid t^{2}+u^{2}=1\right\}
$$

on the cylinder.

LECTURE 12: BLOWING UP VARIETIES AT THE ORIGIN (THEORY AND EXAMPLES) 5
2.6. Whitney umbrella. The Whitney umbrella is given by

$$
V=\mathbb{V}\left(X^{2}-Z Y^{2}\right)
$$

This has a singularity at the origin (although this is not the only place it is singular!) Consider the blowup map

$$
\begin{aligned}
\pi: \quad B_{0}\left(\mathbb{C}^{3}\right)=\left\{(x, \ell) \in \mathbb{C}^{3} \times \mathbb{P}^{2} \mid x \in \ell\right\} & \longrightarrow \mathbb{C}^{3} \\
(x, \ell) & \longmapsto x .
\end{aligned}
$$

If we look at $\pi^{-1}(V \backslash\{0\})$, we get

$$
\left\{((x, y, z), \ell) \in \mathbb{C}^{3} \times \mathbb{P}^{2} \mid x \in \ell, x^{2}=z y^{2}, \mathbf{x} \neq 0\right\}
$$

Using projective coordinates: we get

$$
\left\{\begin{array}{l|l}
((x, y, z),[t: u: v]) & \begin{array}{c}
x^{2}=z y^{2} \\
x u-y t=0 \\
y v-z u=0 \\
x v-z t=0
\end{array}
\end{array}\right\} .
$$

Intersect with the chart where $v \neq 0$: so we have

$$
\left\{\begin{array}{l|l}
((x, y, z),[t: u: 1]) & \begin{array}{c}
x^{2}=z y^{2} \\
x u-y t=0 \\
y-z u=0 \\
x-z t=0
\end{array}
\end{array}\right\} .
$$

This is isomorphic to

$$
\left\{\begin{array}{l|l}
(x, y, z, t, u) & \begin{array}{c}
x^{2}=z y^{2} \\
x u=y t \\
y=z u \\
x=z t
\end{array}
\end{array}\right\} .
$$

Using the third and fourth equations:

$$
\left\{(z t, z u, z, t, u) \in \mathbb{C}^{5} \mid u^{2}=z t^{2}\right\}
$$

Since $z \neq 0$, we can divide through by z^{2} :

$$
\left\{(z t, z u, z, t, u) \in \mathbb{C}^{5} \mid u^{2}=z t^{2}\right\}
$$

But this has exactly the same singularity as the original Whitney umbrella! So we need better blowup methods. There is no scope for this in this course: but what we would need to do in this case, for example, is to blow up the whole z-axis, and then blow up at the origin.

