LECTURE 2: POLYNOMIAL RINGS AND AFFINE VARIETIES

In this lecture, we will reintroduce *polynomial rings* over the complex numbers \mathbb{C} , and use these to define the concept of an *affine algebraic variety* over \mathbb{C} . We will then give some examples and non-examples of varieties, and show some basic properties of varieties.

1. Polynomial rings over $\mathbb C$

Recall. We have

$$\mathbb{C}[X] = \left\{ a_0 + a_1 X + a_2 X^2 + \dots + a_m X^m \mid a_i \in \mathbb{C}, \ m \in \mathbb{Z}_{\ge 0} \right\}.$$

We have

$$\mathbb{C}[X,Y] = \left\{ \sum_{i=0}^{\ell} \sum_{j=0}^{m} a_{ij} X^i Y^j \ \middle| \ a_{ij} \in \mathbb{C}, \ \ell, m \in \mathbb{Z}_{\geq 0} \right\},\$$

and more generally,

$$\mathbb{C}[X_1, \dots, X_n] = \left\{ \sum_{i_1=0}^{m_1} \cdots \sum_{i_n=0}^{m_n} a_{i_1 \cdots i_n} X_1^{i_1} \cdots X_n^{i_n} \mid a_{i_1 \cdots i_n} \in \mathbb{C}, \ m_1, \dots, m_n \in \mathbb{Z}_{\ge 0} \right\}.$$

We will go into more detail about the properties of these rings in Lectures 4–6. Right now, all we need is the definition.

2. Affine varieties

Definition 1. An affine algebraic variety is the set of common zeros in \mathbb{C}^n of a set of polynomials in $\mathbb{C}[X_1, \ldots, X_n]$. For a set

$$\{F_i \in \mathbb{C}[X_1, \ldots, X_n] \mid i \in I\}$$

of polynomials (where I is some indexing set), we have

$$V = \{ (x_1, \dots, x_n) \in \mathbb{C}^n \mid F_i(x_1, \dots, x_n) = 0 \text{ for all } i \in I \}.$$

We usually write

$$V = \mathbb{V}(\{F_i\}_{i \in I}) \subset \mathbb{C}^n.$$

Important note! From now on, we will simply refer to affine algebraic varieties as *varieties*, for the sake of brevity. However, be aware that this is *not* the most general definition of variety, and hence when you see the word "variety" in other sources, they may be talking about something more general.

3. Examples and non-examples of varieties

Examples of varieties.

(1) The entire space \mathbb{C}^n and the empty set \emptyset are both varieties: we have

$$\mathbb{C}^n = \mathbb{V}(0)$$
 and $\emptyset = \mathbb{V}(1)$.

(2) A set containing a single point $(a_1, \ldots, a_n) \in \mathbb{C}^n$ is a variety:

$$\{(a_1,\ldots,a_n)\} = \mathbb{V}(X_1 - a_1,\ldots,X_n - a_n).$$

(3) We can consider

$$\mathbb{V}(X^2 + Y^2 - 1) \subset \mathbb{C}^2,$$

whose real locus is the unit circle in \mathbb{R}^2 .

$$(4)$$
 Consider

$$\mathbb{V}(y^2 - x^3 + x - 1).$$

This is an *elliptic curve*: we can draw its real locus.

(5) The set $SL_2(\mathbb{C})$ can be identified with a variety in \mathbb{C}^4 , given by

$$\mathbb{V}(X_1X_4 - X_2X_3 - 1) \subset \mathbb{C}^4$$

Similarly, the set of 2×2 matrices of any fixed determinant $D \in \mathbb{C}$ form a variety in \mathbb{C}^4 given by

$$\mathbb{V}(X_1X_4 - X_2X_3 - D) \subset \mathbb{C}^4.$$

Non-examples.

(1) A closed square in \mathbb{C}^2 , given by

$$\{(x,y) \in \mathbb{C}^2 \mid |x| \le 1, |y| \le 1\},\$$

is not a variety. (We will go into why in the first problems class.)

- (2) The graph of a transcendental function is not a variety. For example, the zero set of $y e^x$ is not a variety.
- (3) The set $GL_2(\mathbb{C})$ cannot be viewed as a variety. To quickly see why, we will develop some basic properties of varieties.

4. Some properties of varieties

- **Proposition 2.** (i) The union of finitely many varieties in \mathbb{C}^n is a variety in \mathbb{C}^n .
 - (ii) The intersection of arbitrarily many varieties in \mathbb{C}^n is a variety in \mathbb{C}^n .
- *Proof.* (i) We show this result is true for the union of two varieties: then it follows for the union of finitely many varieties by induction.

Suppose we have

$$V = \mathbb{V}(F)$$
 and $W = \mathbb{V}(G)$.

Then by definition we have

$$V = \{z \in \mathbb{C}^n \mid F(z) = 0\}$$
$$W = \{z \in \mathbb{C}^n \mid G(z) = 0\}$$

So we want

$$V \cup W = \{ z \in \mathbb{C}^n \mid F(z) = 0 \text{ or } G(z) = 0 \}.$$

Then notice that the polynomial FG vanishes at a point p if and only if at least one of F and G vanishes at p, which is exactly what we want. So we have

$$V \cup W = \{z \in \mathbb{C}^n \mid F(z)G(z) = 0\} = \mathbb{V}(FG).$$

More generally, but by exactly the same principle, if we have

 $V = \mathbb{V}(\{F_i\}_{i \in I}) \quad \text{and} \quad W = \mathbb{V}(\{G_j\}_{j \in J}),$

 $\mathbf{2}$

then we have

$$V \cup W = \mathbb{V}(\{F_i G_j\}_{(i,j) \in I \times J}).$$

(ii) Let

$$V = \mathbb{V}(\{F_i\}_{i \in I}) \quad \text{and} \quad W = \mathbb{V}(\{F_j\}_{j \in J}).$$

Then by definition we have

$$V = \{ z \in \mathbb{C}^n \mid F_i(z) = 0 \text{ for all } i \in I \},$$
$$W = \{ z \in \mathbb{C}^n \mid F_j(z) = 0 \text{ for all } j \in J \}.$$

But then

$$V \cap W = \{z \in \mathbb{C}^n \mid F_i(z) = 0 \text{ for all } i \in I \text{ and } F_j(z) = 0 \text{ for all } j \in J\}$$
$$= \{z \in \mathbb{C}^n \mid F_i(z) = 0 \text{ for all } i \in I \cup J\}$$
$$= \mathbb{V}(\{F_i\}_{i \in I \cup J}).$$

Project idea: Zariski topology and affine space. These properties can be used to define a topology on \mathbb{C}^n , called the *Zariski topology*, and an associated topological space called *affine n-space*, denoted by \mathbb{A}^n .

Proposition 3. Every variety in \mathbb{C}^n is closed in the Euclidean topology.

Proof. Let

$$V = \mathbb{V}(\{F_i\}_{i \in I}).$$

We showed in the proof of the previous proposition that we have $V = \bigcap \mathbb{V}(E_{\tau})$

$$V = \bigcap_{i \in I} \mathbb{V}(F_i).$$

The intersection of arbitrarily many closed sets is closed, and so all we need to do is show that $\mathbb{V}(f)$ is closed for any $f \in \mathbb{C}[X_1, \ldots, X_n]$.

We have

$$\mathbb{V}(f) = \{ z \in \mathbb{C}^n \mid f(z) = 0 \},\$$

or, equivalently,

$$\mathbb{V}(f) = f^{-1}(\{0\}).$$

Then since polynomial maps are continuous (in the topological sense), the preimage of the closed singleton set $\{0\}$ must also be closed.

Corollary 4. $\operatorname{GL}_2(\mathbb{C})$ cannot be viewed as a variety in \mathbb{C}^4 .

Proof. Note that $\operatorname{GL}_2(\mathbb{C})$ is the complement of the set

$$\mathbb{V}(X_1X_4 - X_2X_3) \subset \mathbb{C}^4.$$

This is a variety, and is hence closed in \mathbb{C}^4 , meaning that $\operatorname{GL}_2(\mathbb{C})$ is open. Then, since the only clopen sets in \mathbb{C}^4 are \mathbb{C}^4 and \emptyset , it cannot also be closed, and therefore cannot be a variety.

Next lecture, we will discuss *morphisms* (structure-preserving maps) between varieties.