LECTURE 3: IRREDUCIBLE VARIETIES AND MORPHISMS OF VARIETIES

In this lecture, we will give definitions of irreducible and reducible varieties, of the dimension of a variety, and of a morphism of varieties, and give some examples.

1. Irreducible varieties

Definition 1. We say a variety V is reducible if we can write V as the non-trivial union of two varieties. That is, we can write

$$
V=V_{1} \cup V_{2}
$$

where $V_{1} \neq V$ and $V_{2} \neq V$ are varieties.
If V is not reducible, we say that V is irreducible.
When does this happen in the case of curves in \mathbb{C}^{2} ? Recall from last lecture that we have

$$
\mathbb{V}(F) \cup \mathbb{V}(G)=\mathbb{V}(F \cdot G)
$$

So a variety $V=\mathbb{V}(F)$ defined by one polynomial will be irreducible if and only if F is a power of an irreducible polynomial g. (Recall: a polynomial G is irreducible if it cannot be written as $G=G_{1} G_{2}$ for two non-constant polynomials G_{1}, G_{2}.)

Examples of irreducible varieties.
(1) The parabola $\mathbb{V}\left(Y-X^{2}\right) \subseteq \mathbb{C}^{2}$ is irreducible.
(2) The circle $\mathbb{V}\left(X^{2}+Y^{2}-1\right) \subseteq \mathbb{C}^{2}$ is irreducible.
(3) The elliptic curve $\mathbb{V}\left(Y^{2}-X^{3}+X-1\right) \subseteq \mathbb{C}^{2}$ is irreducible.
(4) A line (e.g. $\left.\mathbb{V}(Y-X) \subseteq \mathbb{C}^{2}\right)$ is irreducible.
(5) The cuspical cubic $\mathbb{V}\left(Y^{2}-X^{3}\right) \subseteq \mathbb{C}^{2}$ is irreducible.
(6) The twisted cubic, defined by $\mathbb{V}\left(X^{2}-Y, X^{3}-Z\right) \subseteq \mathbb{C}^{3}$, is irreducible.

Examples of reducible varieties.

(1) The variety $\mathbb{V}\left(X^{2}-Y^{2}\right)$ is not irreducible, as we have $X^{2}-Y^{2}=(X+$ $Y)(X-Y)$, and hence

$$
\mathbb{V}\left(X^{2}-Y^{2}\right)=\mathbb{V}(X+Y) \cup \mathbb{V}(X-Y)
$$

(2) Despite first appearances, the variety $\mathbb{V}\left(X^{2}+Y^{2}\right)$ is not irreducible, as we are working over \mathbb{C} and hence we have $X^{2}+Y^{2}=(X+i Y)(X-i Y)$.
(3) The variety

$$
\mathbb{V}\left(X^{2}-Y Z, X Z-X\right)
$$

from Problems Class 1 is reducible. Recall that we divided it up into the two lines $X=Y=0$ and $X=Z=0$ and the parabola $Z-1=Y-X^{2}=0$: so we have
$\mathbb{V}\left(X^{2}-Y Z, X Z-X\right)=\mathbb{V}(X, Y) \cup \mathbb{V}(X, Z) \cup \mathbb{V}\left(Z-1, Y-X^{2}\right)$.
(4) Note that the intersection of two irreducible varieties is not necessarily irreducible: consider

$$
\mathbb{V}\left(Y-X^{2}, 1-Y-X^{2}\right)=\mathbb{V}\left(Y-X^{2}\right) \cap \mathbb{V}\left(1-Y-X^{2}\right)
$$

Both $\mathbb{V}\left(Y-X^{2}\right)$ and $\mathbb{V}\left(1-Y-X^{2}\right)$ are irreducible varieties, but their intersection is the set of two points

$$
\left\{\left(\frac{\sqrt{2}}{2}, \frac{1}{2}\right),\left(-\frac{\sqrt{2}}{2}, \frac{1}{2}\right)\right\} .
$$

As mentioned last lecture, a single point is always a variety. So this variety is the non-trivial union of two varieties, and hence not irreducible.

2. The dimension of a variety

Definition 2. Let V be a variety. Then a subvariety W of V is just a subset of V which is itself a variety.

Now that we have the notions of an irreducible variety and a subvariety, we can give the definition of the dimension of a variety.

Definition 3. Let V be a variety. Then the dimension $\operatorname{dim} V$ of V is the length of the longest possible chain

$$
V_{d} \supsetneq V_{d-1} \supsetneq \cdots \supsetneq V_{1} \supsetneq V_{0}
$$

where the V_{i} are distinct non-empty irreducible subvarieties of V.
We can also define the dimension $\operatorname{dim}_{x}(V)$ of V near a point $x \in V$. This is defined to be the length of the longest possible chain of distinct non-empty irreducible subvarieties of V ending in $\{x\}$: i.e,

$$
V_{d} \supsetneq V_{d-1} \supsetneq \cdots \supsetneq V_{1} \supsetneq\{x\} .
$$

Most varieties have the dimension one would expect: however, it is often very difficult to actually prove that a given variety has the dimension one would expect. Even showing that \mathbb{C}^{n} is n-dimensional is non-trivial! This is an area of the subject which benefits greatly from highly algebraic machinery.

3. Morphisms of varieties

Definition 4. Let $V \subseteq \mathbb{C}^{n}$ and $W \subseteq \mathbb{C}^{m}$ be varieties. A map $F: V \rightarrow W$ is a morphism of varieties if it is the restriction of a polynomial map $\mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$. We call a morphism of varieties an isomorphism if it is bijective and if its inverse is also a morphism.

Examples.

(1) The projection map

$$
\begin{aligned}
\pi_{X}: & \mathbb{C}^{2} \\
(x, y) & \longmapsto \mathbb{C} \\
& \longmapsto x
\end{aligned}
$$

is a morphism from \mathbb{C}^{2} to \mathbb{C}. It is not an isomorphism, as it is not injective.
(2a) Let $V=\mathbb{V}\left(Y-X^{2}\right)$. Then we have a bijective morphism $\mathbb{C} \rightarrow V$ given by

$$
t \mapsto\left(t, t^{2}\right)
$$

It has an inverse $V \rightarrow \mathbb{C}$ given by (the restriction of) the projection map $(x, y) \mapsto x$, and hence this morphism is an isomorphism.
(2b) Consider the restriction of the other projection map $V \rightarrow \mathbb{C}$ given by $(x, y) \mapsto y$. This morphism is surjective, but not injective, and hence does not have an inverse.
(3) Let

$$
M=\left(\begin{array}{ccc}
m_{11} & \cdots & m_{1, n} \\
\vdots & \cdots & \vdots \\
m_{n, 1} & \cdots & m_{n, n}
\end{array}\right) \in \mathrm{GL}_{n}(\mathbb{C})
$$

Then the map

$$
\begin{aligned}
f_{M}: \mathbb{C}^{n} & \longrightarrow \mathbb{C}^{n} \\
\mathbf{z} & \longmapsto M \mathbf{z}
\end{aligned}
$$

is an isomorphism from \mathbb{C}^{n} to \mathbb{C}^{n}. (An isomorphism from a space to itself is usually called an automorphism.)
It should be noted that a morphism between two algebraic varieties doesn't necessarily send subvarieties to subvarieties. Consider again the projection map

$$
\begin{aligned}
\pi_{X}: & \mathbb{C}^{2} \\
(x, y) & \longmapsto \mathbb{C} \\
& \longmapsto x .
\end{aligned}
$$

Now consider the subvariety $H=\mathbb{V}(X Y-1)$ of \mathbb{C}^{2}. This is a hyperbola, and can be given by

$$
H=\left\{\left(t, t^{-1}\right) \mid t \in \mathbb{C}, t \neq 0\right\}
$$

The image of H under π_{X} is just $\mathbb{C} \backslash\{0\}$, which is not a subvariety of \mathbb{C} (it is open in the Euclidean topology). So while π_{X} is a morphism $\mathbb{C}^{2} \rightarrow \mathbb{C}$ of the ambient varieties, it can send subvarieties to sets which are no longer varieties.

Note. Under a more general definition of "variety", this set would be considered to be a variety.

If there exists an isomorphism f between two varieties V and W, we say that V and W are isomorphic.

Example. The twisted cubic

$$
V=\mathbb{V}\left(X^{2}-Y, X^{3}-Z\right)
$$

is isomorphic to \mathbb{C}. To see this, we first show that V can be written as

$$
V=\left\{\left(t, t^{2}, t^{3}\right) \mid t \in \mathbb{C}\right\}
$$

Then there exists a clear map $f: \mathbb{C} \rightarrow V$ sending t to $\left(t, t^{2}, t^{3}\right)$, and its inverse is projection to the first coordinate.

Next lecture: we will move on to a more abstract part of the course. We will recall some definitions from abstract algebra (prime, maximal and radical ideals of a ring), define Noetherian rings and explore their properties, and define the variety of an ideal.

