LECTURE 3: IRREDUCIBLE VARIETIES AND MORPHISMS OF VARIETIES

In this lecture, we will give definitions of *irreducible* and *reducible* varieties, of the *dimension* of a variety, and of a *morphism* of varieties, and give some examples.

1. IRREDUCIBLE VARIETIES

Definition 1. We say a variety V is reducible if we can write V as the non-trivial union of two varieties. That is, we can write

$$V = V_1 \cup V_2,$$

where $V_1 \neq V$ and $V_2 \neq V$ are varieties.

If V is not reducible, we say that V is irreducible.

When does this happen in the case of curves in \mathbb{C}^2 ? Recall from last lecture that we have

$$\mathbb{V}(F) \cup \mathbb{V}(G) = \mathbb{V}(F \cdot G).$$

So a variety $V = \mathbb{V}(F)$ defined by one polynomial will be irreducible if and only if F is a power of an irreducible polynomial g. (Recall: a polynomial G is irreducible if it cannot be written as $G = G_1 G_2$ for two non-constant polynomials G_1, G_2 .) Examples of irreducible varieties.

- (1) The parabola $\mathbb{V}(Y X^2) \subseteq \mathbb{C}^2$ is irreducible.
- (2) The circle $\mathbb{V}(X^2 + Y^2 1) \subseteq \mathbb{C}^2$ is irreducible.
- (3) The elliptic curve $\mathbb{V}(Y^2 X^3 + X 1) \subseteq \mathbb{C}^2$ is irreducible.
- (4) A line (e.g. $\mathbb{V}(Y X) \subseteq \mathbb{C}^2$) is irreducible.
- (5) The cuspical cubic $\mathbb{V}(Y^2 X^3) \subseteq \mathbb{C}^2$ is irreducible.
- (6) The twisted cubic, defined by $\mathbb{V}(X^2 Y, X^3 Z) \subseteq \mathbb{C}^3$, is irreducible.

Examples of reducible varieties.

(1) The variety $\mathbb{V}(X^2 - Y^2)$ is not irreducible, as we have $X^2 - Y^2 = (X + Y^2)$ Y(X - Y), and hence

$$\mathbb{V}(X^2 - Y^2) = \mathbb{V}(X + Y) \cup \mathbb{V}(X - Y).$$

- (2) Despite first appearances, the variety $\mathbb{V}(X^2 + Y^2)$ is not irreducible, as we are working over \mathbb{C} and hence we have $X^2 + Y^2 = (X + iY)(X - iY)$.
- (3) The variety

$$\mathbb{V}(X^2 - YZ, XZ - X)$$

from Problems Class 1 is reducible. Recall that we divided it up into the two lines X = Y = 0 and X = Z = 0 and the parabola $Z - 1 = Y - X^2 = 0$: so we have

$$\mathbb{V}(X^2 - YZ, XZ - X) = \mathbb{V}(X, Y) \cup \mathbb{V}(X, Z) \cup \mathbb{V}(Z - 1, Y - X^2).$$

(4) Note that the intersection of two irreducible varieties is not necessarily irreducible: consider

$$\mathbb{V}(Y - X^2, 1 - Y - X^2) = \mathbb{V}(Y - X^2) \cap \mathbb{V}(1 - Y - X^2).$$

Both $\mathbb{V}(Y - X^2)$ and $\mathbb{V}(1 - Y - X^2)$ are irreducible varieties, but their intersection is the set of two points

$$\left\{ \left(\frac{\sqrt{2}}{2},\frac{1}{2}\right), \left(-\frac{\sqrt{2}}{2},\frac{1}{2}\right) \right\}.$$

As mentioned last lecture, a single point is always a variety. So this variety is the non-trivial union of two varieties, and hence not irreducible.

2. The dimension of a variety

Definition 2. Let V be a variety. Then a subvariety W of V is just a subset of V which is itself a variety.

Now that we have the notions of an irreducible variety and a subvariety, we can give the definition of the *dimension* of a variety.

Definition 3. Let V be a variety. Then the dimension $\dim V$ of V is the length of the longest possible chain

$$V_d \supseteq V_{d-1} \supseteq \cdots \supseteq V_1 \supseteq V_0,$$

where the V_i are distinct non-empty irreducible subvarieties of V.

We can also define the dimension $\dim_x(V)$ of V near a point $x \in V$. This is defined to be the length of the longest possible chain of distinct non-empty irreducible subvarieties of V ending in $\{x\}$: i.e.,

$$V_d \supseteq V_{d-1} \supseteq \cdots \supseteq V_1 \supseteq \{x\}.$$

Most varieties have the dimension one would expect: however, it is often very difficult to actually prove that a given variety has the dimension one would expect. Even showing that \mathbb{C}^n is *n*-dimensional is non-trivial! This is an area of the subject which benefits greatly from highly algebraic machinery.

3. Morphisms of varieties

Definition 4. Let $V \subseteq \mathbb{C}^n$ and $W \subseteq \mathbb{C}^m$ be varieties. A map $F : V \to W$ is a morphism of varieties if it is the restriction of a polynomial map $\mathbb{C}^n \to \mathbb{C}^m$. We call a morphism of varieties an isomorphism if it is bijective and if its inverse is also a morphism.

Examples.

 $\mathbf{2}$

(1) The projection map

$$\pi_X: \begin{array}{ccc} \mathbb{C}^2 & \longrightarrow & \mathbb{C} \\ (x,y) & \longmapsto & x \end{array}$$

is a morphism from \mathbb{C}^2 to \mathbb{C} . It is not an isomorphism, as it is not injective. (2a) Let $V = \mathbb{V}(Y - X^2)$. Then we have a bijective morphism $\mathbb{C} \to V$ given by

$$t \mapsto (t, t^2).$$

It has an inverse $V \to \mathbb{C}$ given by (the restriction of) the projection map $(x, y) \mapsto x$, and hence this morphism is an isomorphism.

(2b) Consider the restriction of the *other* projection map $V \to \mathbb{C}$ given by $(x, y) \mapsto y$. This morphism is surjective, but not injective, and hence does not have an inverse.

(3) Let

$$M = \begin{pmatrix} m_{11} & \cdots & m_{1,n} \\ \vdots & \cdots & \vdots \\ m_{n,1} & \cdots & m_{n,n} \end{pmatrix} \in \mathrm{GL}_n(\mathbb{C}).$$

Then the map

$$\begin{array}{rcccc} f_M : & \mathbb{C}^n & \longrightarrow & \mathbb{C}^n \\ & \mathbf{z} & \longmapsto & M\mathbf{z} \end{array}$$

is an isomorphism from \mathbb{C}^n to \mathbb{C}^n . (An isomorphism from a space to itself is usually called an *automorphism*.)

It should be noted that a morphism between two algebraic varieties *doesn't* necessarily send subvarieties to subvarieties. Consider again the projection map

$$\pi_X: \begin{array}{ccc} \mathbb{C}^2 & \longrightarrow & \mathbb{C} \\ (x,y) & \longmapsto & x. \end{array}$$

Now consider the subvariety $H = \mathbb{V}(XY - 1)$ of \mathbb{C}^2 . This is a hyperbola, and can be given by

$$H = \{ (t, t^{-1}) \mid t \in \mathbb{C}, t \neq 0 \}.$$

The image of H under π_X is just $\mathbb{C}\setminus\{0\}$, which is *not* a subvariety of \mathbb{C} (it is open in the Euclidean topology). So while π_X is a morphism $\mathbb{C}^2 \to \mathbb{C}$ of the ambient varieties, it can send subvarieties to sets which are no longer varieties.

Note. Under a more general definition of "variety", this set would be considered to be a variety.

If there exists an isomorphism f between two varieties V and W, we say that V and W are isomorphic.

Example. The twisted cubic

$$V = \mathbb{V}(X^2 - Y, X^3 - Z)$$

is isomorphic to \mathbb{C} . To see this, we first show that V can be written as

$$V = \{ (t, t^2, t^3) \mid t \in \mathbb{C} \}.$$

Then there exists a clear map $f : \mathbb{C} \to V$ sending t to (t, t^2, t^3) , and its inverse is projection to the first coordinate.

Next lecture: we will move on to a more abstract part of the course. We will recall some definitions from abstract algebra (prime, maximal and radical ideals of a ring), define *Noetherian rings* and explore their properties, and define the *variety* of an ideal.