
Lectures 5–7: Ideal/variety correspondence and Hilbert’s nullstellensatz

Proposition 11. Let k be a field and R = k[X1, . . . , Xn].

(1) X ⊆ kn ⇒ X ⊆ V(I(X)) with equality if and only if X is a variety.

(2) X ⊆ Y ⊆ kn ⇒ I(X) ⊇ I(Y)

(3) J ⊆ R⇒ J ⊆ I(V(J)). This inclusion may be strict.

Proof.

(1) Let x ∈ X then I(X) only contains polynomials that vanish on all of X and hence
on x in particular. Clearly therefore x ∈ V(I(X)). Now if X = V(I(X)) then X
is a variety. Conversely, if X = V(J) for some ideal J then J ⊆ I(X) soV(I(X)) ⊆
V(J) = X by proposition 10 of lecture 4.

(2) Let f ∈ I(Y) then f vanishes on all of Y and hence on all of X.

(3) This proof of this follows a similar argument the first part of (1).

Corollary 12 (Descending chain condition on varieties). If X1 ⊇ X2 ⊇ ⋯ ⊇ Xn ⊇ . . . is a
descending chain of varieties then there is an integer N such that XN = XN+1 = ⋯.

Similarly, any non-empty set of varieties contains a minimal element.

Proof. Use proposition 11 on the whole chain and then apply the ascending chain condi-
tion on ideals. For the second part confer with proposition 6 of lecture 4.

Hilbert’s Nullstellensatz is a key theorem in algebraic geometry and helps us un-
derstand when we have equality in part (3). Consider the following examples in which
equality does not hold.

Example 13. We consider the real fieldR and the polynomial ringR[X]. Let f = X2 + 1
and J = ( f ) be the ideal generated by f . Clearly J ≠ R[X], but since f has no real roots
V(J) = ∅. Thus I(V(J)) = k[X] ≠ J.

The key property of the reals being used here is thatR is not algebraically closed and
so f does not have enough zeros.

Example 14. Consider a polynomial f ∈ k[X1, . . . , Xn]. For any positive integer m we
know that f (P) = 0 ⇔ f m(P) = 0. Thus V( f m) = V( f ) but clearly the ideals ( f m)
and ( f ) need not be equal.
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Irreducible varieties

Definition 15 (Irreducible). Avariety X ⊆ kn is called irreducible if whenever X = X1∪X2
for Xi varieties then either X1 = X or X2 = X. That is, we cannot decompose X into a
union of strict subvarieties.

Example 16. Consider the variety V(XY) ⊆ C2. The polynomial XY is zero if either
X = 0 or Y = 0 hence V(XY) consists of the X-axis and the Y-axis. That is, V(XY) =
V(X) ∪V(Y), hence it is reducible.

Proposition 17. Let X be a variety and I(X) its corresponding ideal.

(1) X is irreducible if and only if I(X) is a prime ideal.

(2) X can be expressed uniquely (up to permutation) as a union of irreducible varieties

X = X1 ∪ X2 ∪⋯ ∪ Xn

such that Xi ⊄ X j for all i ≠ j.

The Xi in the decomposition are called the irreducible components of X.

Proof.

(1) We prove X is reducible⇔ I(X) is not a prime ideal.
(⇒) Suppose X is reducible so X = X1 ∪ X2. Since Xi ≠ X there is an fi ∈ I(Xi) ∖
I(X) for each i. Now clearly f1(P) f2(P) = 0 for all P ∈ X hence f1 f2 ∈ I(X) but
neither fi ∈ I(X) and therefore I(X) is not prime.
(⇐) Suppose I(X) is not prime so there are elements f1, f2 ∉ I(X) such that f1 f2 ∈
I(X). Let Ji = I(X) + ( fi) for each i and let Xi = V(Ji). Now Xi ⊊ X for each i
thus X ⊇ X1 ∪ X2. To see the opposite inclusion consider P ∈ X. If f1(P) f2(P) = 0
then either f1(P) = 0 or f2(P) = 0 thus P ∈ X1 or P ∈ X2.

(2) Let X be the set of varieties of kn that do not have a decomposition into a union
of irreducible varieties. IfX = ∅ then we are done so assume thatX is non-empty
and therefore (by corollary 12) contains a minimal element X ∈ X . As irreducible
elements have a trivial decomposition we conclude X = X1 ∪ X2 is reducible and
by minimality Xi ∉ X . Therefore each Xi can be decomposed into a union of
irreducible varieties and thus so can X. We conclude X is empty.

The uniqueness of decomposition is left as an exercise.
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Nullstellensatz

Hilbert’s Nullstellensatz is a fundamental theorem in algebraic geometry, the proof of
which hinges on Zariski’s lemma, which we will state but not prove. You may wish to
consider exploring Zariski’s lemma for your project.

Definition 18 (Finitely generated k-algebra). A ring R is called a finitely generated k-
algebra if there are elements r1, . . . , rn ∈ R such that R = k[r1, . . . , rn]. That is, every
element of R can be expressed as a sum of products of the elements ri with coefficients
from k.

Proposition 19. If R = k[r1, . . . , rn] is a finitely generated k-algebra then R is isomor-
phic to the quotient of a polynomial ring by some ideal: R ≅ k[X1, . . . , Xn]/I. Thus by
proposition 7 and corollary 9 of lecture 4 each finitely generated k-algebra is Noetherian.

Proof. Consider the homomorphism

ϕ∶ k[X1, . . . , Xn] Ð→ k[r1, . . . , rn]
Xi ↦ ri

Let I = kerϕ and apply the first isomorphism theorem (from Algebra 2).

Theorem 20: Zariski’s Lemma

Let k be a field and let R be a finitely generated k-algebra. If R is a field then R is
algebraic over k.

Recall. If F/K is a field extension then an element of x ∈ F is said to be algebraic over K
if there is a polynomial f ∈ K[X] such that f (x) = 0. If no such polynomial exists then
x is said to be transcendental.

The field F is algebraic over K if every element of F is algebraic.

Theorem 21: Weak Nullstellensatz

Let k be an algebraically closed field and let R = k[X1, . . . , Xn].

(1) Every maximal ideal of R is of the form mP = (X1 − r1, . . . , Xn − rn) = I(P)
for some point P = (r1, . . . , rn) ∈ kn.

(2) If J ⊊ R is a proper ideal thenV(J) ≠ ∅.

Proof.
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(1) Let m ⊂ R = k[X1, . . . , Xn] be a maximal ideal and let K = R/m. Note that K is
a field since m is maximal. Let ι∶ k ↪ R be the natural inclusion of k into R and
let π∶R→Ð→K be the natural projection of R onto K. Let ϕ = π ○ ι∶ k → K be the
composition of these two homomorphisms. It is clear that K is a finitely gener-
ated k-algebra (simply take as generators the images π(Xi) ∈ K) and therefore by
Zariski’s lemma (20) K is algebraic over k. By assumption k is algebraically closed
and therefore K ≅ k and ϕ is an isomorphism.

Let bi = π(Xi) be the image of Xi under the natural projection and let ri = ϕ−1(bi)
for each i. Then π(Xi − ri) = 0 and so each (Xi − ri) ∈ ker π = m. Thus (X1 −
r1, . . . , Xn−rn) ⊆ m. Since (X1−r1, . . . , Xn−rn) is maximal wemust have equality.

(2) As J is a proper ideal there is a maximal ideal m ⊇ J. By (1) there is a point P =
(r1, . . . , rn) ∈ kn such that m = (X1 − r1, . . . , Xn − rn). Clearly f (P) = 0 for all
f ∈ m and therefore f (P) = 0 for all f ∈ J. That is, P ∈ V(J).

Note. As we have already established (see example 13) this theorem is completely false
in the case that k is not algebraically closed. In this case it is easy to find a non-constant
polynomial f , with no zeros in k, but clearly 1 ∉ ( f ).

Theorem 22: Hilbert’s Nullstellensatz

Let k be an algebraically closed field and let R = k[X1, . . . , Xn].
If J ⊆ R is an ideal then I(V(J)) = rad J.

Proof. Let J ∈ R = k[X1, . . . , Xn] be any ideal and let f ∈ I(V(J)). We already know
that rad J ⊆ I(V(J)) by the example 14 so we need only show that f ∈ rad J. We prove
this using the Weak Nullstellensatz and a clever idea known as the Rabinowitsch trick.

We introduce a new variable Y and consider the ideal (J , f Y − 1) ⊆ R[Y] =
k[X1, . . . , Xn ,Y]. As f ∈ I(V(J)) we know that if all polynomials in J vanish at some
point P ∈ kn then f (P) = 0 as well. Clearly therefore (J , f Y − 1) = ∅, since if all poly-
nomials in J vanish, the last polynomial takes the value −1. We can now apply the Weak
Nullstellensatz and deduce that 1 ∈ (J , f Y − 1). That is, for some дi ∈ R[Y] and some
fi ∈ J we have

1 = д0( f Y − 1) +
t
∑
i=1

дi fi

Now since Y is a free variable this identity continues to hold if we replace Y by some
other expression, thus we may substitute Y = 1/ f and consider the expression over the
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field K(X1, . . . , Xn). Spelling this out we have

1 =
t
∑
i=1

дi(X1, . . . , Xn , 1/ f ) fi(X1, . . . , Xn)

Notice however that the only things that can appear in the denominator of this fraction
are powers of f , thus we may change to a common denominator and rewrite this as

1 = ∑ hi(X1, . . . , Xn) fi(X1, . . . , Xn)
f (X1, . . . , Xn)s

Finally we can multiply through by f s and we have an expression that lives in R

f s =∑ hi(X1, . . . , Xn) fi(X1, . . . , Xn)

This demonstrates that f ∈ rad J and completes the proof.

Corollary 23. Let k be an algebraically closed field and let R = k[X1, . . . , Xn].
The correspondencesV and I induce bijections between radical ideals of R and varieties

of kn and bijections between prime ideals of R and irreducible varieties of kn.

{ideals I ⊆ R} {subsets X ⊆ kn}

{radical ideals I ⊆ R} {varieties X ⊆ kn}

{prime ideals I ⊆ R} {irreducible varieties X ⊆ kn}

V

I

⊆ ⊆

⊆ ⊆

Proof. This is routine by using propositions 11 and 17 and the Nullstellensatz.

Coordinate rings

Let V ⊆ kn be a variety and consider a polynomial function on V . This is simply the
restriction of a polynomial f ∈ k[X1, . . . , Xn] to the set V . Two polynomials f and
д ∈ k[X1, . . . , Xn] represent the same function on V whenever f (P) − д(P) = 0 for all
P ∈ V . That is, whenever f − д ∈ I(V). This gives us the next definition.

Definition 24 (Coordinate ring). Let V ⊆ kn be a variety. The coordinate ring k[V] is
defined to be

k[V] = { f ∶V → k ∣ f is a polynomial} ≅ k[X1, . . . , Xn]/I(V)
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Each ideal of k[V] corresponds to an ideal J of k[X1, . . . , Xn] containing I(V). Thus
V(J) ⊆ V by proposition 11. Conversely if X ⊆ V then I(X) ⊇ I(V) and thus I(X)
corresponds to an ideal of k[V]. Therefore the correspondences I and V restrict to the
coordinate ring and variety.

{ideals I ⊆ k[V]} {subsets X ⊆ V}
V

I

Recall. Let V ⊆ kn andW ⊆ km be varieties. Let X1, . . . , Xn be the coordinates of kn and
Y1, . . . ,Ym be the coordinates of km.

A morphism of varieties f ∶V → W is simply a map between the varieties that may
be realised by polynomial functions:

f (P) = ( f1(P), . . . , fm(P)) ∈W ⊆ km for all P ∈ V

where each fi ∈ k[X1, . . . , Xn].

Definition 25 (Coordinate function). The function f j = Yj○ f is called the jth coordinate
function.

V W

k

f

f j
Yj

Proposition 26. A general function f ∶V → W is a morphism of varieties if and only if
each coordinate function is an element of the coordinate ring k[V].

Proof. The proof of this proposition is left as an exercise.

Theorem 27:

Let V ⊆ kn andW ⊆ km be varieties.

(1) A morphism of varieties f ∶V → W induces a ring homomorphism
f ∗∶ k[W]→ k[V] between the coordinate rings but in the opposite direction.
Where f ∗ is simply the composition of maps: f ∗(д) = д ○ f for all д ∈ k[W].
Moreover, the map f ∗ restricts to the identity map on k.

(2) Conversely any ring homomorphism Φ∶ k[W] → k[V] that restricts to the
identity map on k is uniquely determined by a map of varieties f ∶V →W .

(3) If f ∶V →W and д∶W → U aremorphisms of varieties then (д○ f )∗ = f ∗○ д∗.
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Note. Recall that coordinate rings are actually finitely generated k-algebras. Ring homo-
morphisms that restrict to the identity map on k such as those described in this theorem
are known as k-algebra homomorphisms.

Proof.

(1) Clearly the composition of polynomial maps is a polynomial map and so by propo-
sition 26 f ∗(д) ∈ k[V]. And obviously if we pre-compose a constantmapwith any
other map, it remains a constant function. Thus, f ∗(a) = a for any a ∈ k. Finally
it is plain to see that f ∗(д1 + д2) = (д1 + д2) ○ f = д1 ○ f + д2 ○ f = f ∗(д1)+ f ∗(д2)
and similarly, f ∗(д1д2) = f ∗(д1) f ∗(д2).

(2, 3) This is left as an exercise.

Corollary 28. There is a bijection (duality)

{ morphisms of varieties
f ∶V →W } Ð→ { k-algebra homomorphisms

Φ∶ k[W]→ k[V] }

f ↦ f ∗

such that f is an isomorphism if and only if f ∗ is an isomorphism.
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