
1 Tangent space and singularity

We will restrict our attention to complex varieties in this section.
Our aim is to generalise our understanding of tangency to general varieties. We

understand that the x-axis is tangent to the curve y = x2 at the origin because the curve
has a multiple root at this point. Similarly we can understand the generalised idea in a
similar algebraic manner.

Let us assume that a complex varietyV contains the origin and let ℓ be a line through
the origin. If we fix any point P = (a1, . . . , an) on ℓ then the line may be parameterised
by ℓ = {(ta1, . . . , tan) ∣ t ∈ C}. We wish to understand when ℓ is tangent to V at the
origin.

Let I(V) = ( f1, . . . , fr) then the points in V ∩ ℓ are given by solving the system of
equations

f1(ta1, . . . , tan) = 0
⋮

fr(ta1, . . . , tan) = 0

for values of t. Each fi is a polynomial in one variable t, and therefore separates into
linear factors. The points in V ∩ ℓ are given by the linear factors shared by all r equations.
The multiplicity of a root is simply the number of times it is shared by all equations. In
particular the multiplicity of the root at 0 is just given by the largest power of t dividing
all equations.
Note. It is important that the fi generate the whole radical ideal I(V) and are not simply
generators of the variety, as otherwise multiplicity will be ill-defined.

Definition 1 (Tangent). The line ℓ is tangent to the variety V at the point P if the multi-
plicity of the of the root at P is greater than one. The point is tangent of order n if it has
a root of multiplicity n + 1 at that point.

The tangent space TPV of V at the point P is the union of all lines tangent to V at P.

Example 2. Let V be the variety defined by the polynomial y − x2. Let ℓ = {(ta, tb) ∣ t ∈
C}. The intersection V ∩ ℓ is given by solutions to tb − t2a2 = 0. That is the point (0, 0)
corresponding to t = 0 and the point ( ba ,

b2
a2 ) corresponding to t = b

a2 . The line ℓ is then
only tangent if these two points coincide, that is if b = 0 and we retrieve learn again that
the only tangent line is the x-axis.
Example 3. Let V be the variety defined by the polynomial y2− x3. Now the intersection
with the line ℓ is given by solutions to t2b2 − t3a3 = 0. Clearly for any values of (a, b)
this has a multiple root at 0 and thus all lines are tangent to the origin, that is T0V = C2.
We will see that this is an example of a singular point.
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y2 = x3

Just as we can understand tangency for simple functions in terms of derivatives, the
same is true of varieties.

Definition 4 (Differential). The differential d f ∣0 of a polynomial f at the origin is the
linear part of f . That is, the sum of all degree 1 parts of f .

More generally, for a point p = (a1, . . . , an) we may consider f as a polynomial in
the variables x1 − a1, . . . , xn − an. This is simply the Taylor expansion of f at p. The
differential d f ∣p of f at p is now the linear part of this Taylor expansion.

Theorem 5:

Let V ⊆ Cn be a variety and let I(V) = ( f1, . . . , fr).
The tangent space of V at the origin is the linear variety

T0V = V(d f1∣0, . . . , d fr ∣0) ⊆ Cn .

In particular the space in independent of the choice of generators.

By utilising the Taylor expansion we obtain an equivalent statement for the tangent
space TpV at an arbitrary point p.

Proof. Consider the line ℓ through the fixed point (x1, . . . , xn). As the point 0 is assumed
to be in V we know that the constant part of each fi is zero. Therefore

fi(tx1, . . . , txn) = d fi ∣0(tx1, . . . , txn) + Fi(tx1, . . . , txn)

where d fi ∣0(tx1, . . . , txn) = td fi ∣0(x1, . . . , xn) is homogeneous of degree 1 and
Fi(tx1, . . . , txn) has all terms divisible by t2. We wish to find the values of t for which
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the multiplicity of the root is at least two, clearly this can happen if and only if all the
linear terms are zero

d f1∣0(x1, . . . , xn) = 0
⋮

d fr ∣0(x1, . . . , xn) = 0

We have shown that T0V = V(d f1∣0, . . . , d fr ∣0) as required.
We leave the proof that T0V is independent of the choice of generators as an exercise.

Definition 6. A point P on a variety V is a smooth point if dimTPV = dimp V . Other-
wise, p ∈ V is called a singular point.

The following theorem is a useful tool for calculating the set of singular points of a
variety. We state this theorem without proof.

Theorem 7:

LetV be an irreducible variety inCn of dimension d and let the radical ideal I(V) =
(F1, . . . , Fr).
The singular locus ofV is the set of common zeros inV of the polynomials obtained
as determinants of (n − d) × (n − d)–minors of the Jacobian matrix.

⎛
⎜⎜
⎝

∂F1
∂X1

. . . ∂F2
∂X2

⋮ ⋱ ⋮
∂F1
∂X1

. . . ∂F2
∂X2

⎞
⎟⎟
⎠

Example 8. We calculate the singular locus ofV(Y2 −X3) as in example 3. The Jacobian
matrix is given by

( ∂F∂X
∂F
∂Y ) = (−3X

2 2Y)

Now n−d = 1 and so the determinants of the 1×1–minors are simply −3X2 and 2Y . Thus
the singular locus is given by

V(Y2 − X3) ∩V(−3X2) ∩V(2Y)

and is the single point (0, 0).
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