
PROBLEMS CLASS — WEEK 1

Questions

(1) Show that the given sets are varieties, and write them in the standard
notation V({Fi}i∈I) ⊂ Cn.
(a) {(t2, t3) | t ∈ C}
(b) {(t2, t3 + 1) | t ∈ C}
(c) {(t2, t2) | t ∈ C}
(d) {(t, t) | t ∈ C} ∪ {(t,−t) | t ∈ C}
(e) {(t3 + 1, t2 + t) | t ∈ C}

(2) Describe the following varieties:
(a) V(X2 − Y,X3 − Z) ⊆ C3

(b) V(X2 − Y Z,XZ −X) ⊆ C3

(c) V(XZ − Y 2, Z3 −X5) ⊆ C3

(3) We say that x = (x, y) ∈ C2 is an interior point of a subset A ⊆ C2 if there
exists some ball B(x, r) centred on x of radius r > 0 such that

B(x, r) ⊂ A.
Show that a non-trivial variety

V ⊂ C2

cannot have interior points.
(4) Show that the set

V = {(x, y) ∈ C2 | y = ex}
is not a variety.

Solutions

(1) (a) We have that

(t2)3 = t6 = (t3)2

So writing X = t2 and Y = t3, we can write this set as

V(Y 2 −X3) ⊆ C2.

(b) Similarly to part (a), if we write X = t2 and Y = t3 + 1, then X3 =
(Y − 1)2 = t6, and hence we can write the set as

V((Y − 1)2 −X3) ⊆ C2.

(c) Note that for any s ∈ C, we can find t ∈ C such that t2 = s, and hence
this set can be rewritten as

{(s, s) | s ∈ C} = V(Y −X) ⊆ C2.
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(d) We have

{(t, t) | t ∈ C} = V(Y −X),

{(t,−t) | t ∈ C} = V(Y +X).

Then using the fact that V(F ) ∪ V(G) = V(F ·G), we have that

{(t, t) | t ∈ C} ∪ {(t,−t) | t ∈ C} = V(Y 2 −X2).

(e) This one is a little more difficult to describe as a zero set. One method
of doing so would be to write X = t3 + 1 and Y = t2 + t, and then
take various products and multiples:

1 = 1
Y = t + t2

Y 2 = t2 + 2t3 + t4

Y 3 = t3 + 3t4 + 3t5 + t6

X = 1 + t3

X2 = 1 + 2t3 + t6

XY = t + t2 + t4 + t5

We can rewrite this as a matrix equation:

1
Y
Y 2

Y 3

X
X2

XY


=



1
1 1

1 2 1
1 3 3 1

1 1
1 2 1

1 1 1 1





1
t
t2

t3

t4

t5

t6


Then we can do row reduction to get a row of zeros and hence a
solution: for this, we have

Y 3 −X2 − 3XY +X + 3Y = 0,

and hence the set is V(Y 3 −X2 − 3XY +X + 3Y ) ⊆ C2.
(2) (a) Note that from the first polynomial we have Y = X2 and from the

second we have Z = X3. So if we use a parameter t ∈ C, we can write

V(X2 − Y,X3 − Z) = {(t, t2, t3) | t ∈ C}.

(b) From the second polynomial, we have X(Z− 1) = 0. So we must have
X = 0 or Z = 1 (or both).
If X = 0, then the first polynomial gives Y Z = 0, which is satisfied
when Y = 0 or Z = 0: so the lines X = Y = 0 and X = Z = 0 are
part of the variety.
If Z = 1, then the first polynomial gives Y = X2, and hence the
parabola Z = 1, Y = X2 is another part of the variety.
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(c) First use both polynomials to note that the only points in this variety
with X = 0 or Y = 0 are the origin (0, 0, 0). So assume that X 6=
0, Y 6= 0.
We can then look at the equality from the first polynomial:

XZ − Y 2 = 0 ⇔ Y

X
=
Z

Y
=: t.

(We can divide by X and Y since we assumed they’re non-zero.) So
we have

Y = tX, Z = tY = t2X,

and hence

V(XZ − Y 2) = {(x, tx, t2x) | x, t ∈ C}.
To calculate the first variety, we substitute these points into the second
polynomial (as we want the intersection:

t6x3 − x5 = 0.

We can cancel a factor of x2 (again, since x 6= 0), and get

x2 = t6.

Then this is only true if x = t3 or x = −t3. So our variety V has two
pieces:

V = {(t3, t4, t5) | t ∈ C} ∪ {(−t3,−t4,−t5) | t ∈ C}.
(3) First note that it suffices to show this for a variety of the form V(F ), since

the intersection of two sets without interior points can’t gain interior points.
Suppose P = (x, y) is an interior point of

V = V(F (X,Y )) ⊆ C2.

Fix X = x ∈ C. Then we have a polynomial Fx(Y ) = F (x, Y ) ∈
C[Y ]. Since (x, y) is an interior point, we have that Fx(Y ) = 0 on the set
(y − r, y + r): but we know that a non-zero polynomial in one variable can
only have finitely many zeros. So Fx(Y ) is identically zero.
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Similarly, the polynomial Fy(X) ∈ C[X] is identically zero, and hence
F (X,Y ) is identically zero. So V(F ) = C2, giving us a contradiction (we
assumed V was non-trivial).

(4) Suppose that V were a variety. Then the set

W = V ∩ V(Y − 1)

would also be a variety (since we know that the intersection of two varieties
is a variety).

We have

W = {(x, 1) | ex = 1} = {(2πki, 1) | k ∈ Z}.
Then we just need to show the following: a variety V ⊆ C2 can only have

finitely many isolated points (i.e. points x of V with the property that there
exists a ball B(x, r) around x such that B(x, r) ∩ V = {x}). Note that all
points of W are isolated, and that it does have infinitely many points: so
if we can prove this result, then neither W nor V can be varieties.

First, we note that V(F ) ⊆ C2 cannot have any isolated points. Then we
reason that by Bézout’s theorem (mentioned in Lecture 1), the intersection
V(F,G) of two zero sets must have finitely many isolated points. Adding
in further polynomials only brings down the number of intersection points:
so infinitely many will be impossible.


