PROBLEMS CLASS - WEEK 1

Questions

(1) Show that the given sets are varieties, and write them in the standard notation $\mathbb{V}\left(\left\{F_{i}\right\}_{i \in I}\right) \subset \mathbb{C}^{n}$.
(a) $\left\{\left(t^{2}, t^{3}\right) \mid t \in \mathbb{C}\right\}$
(b) $\left\{\left(t^{2}, t^{3}+1\right) \mid t \in \mathbb{C}\right\}$
(c) $\left\{\left(t^{2}, t^{2}\right) \mid t \in \mathbb{C}\right\}$
(d) $\{(t, t) \mid t \in \mathbb{C}\} \cup\{(t,-t) \mid t \in \mathbb{C}\}$
(e) $\left\{\left(t^{3}+1, t^{2}+t\right) \mid t \in \mathbb{C}\right\}$
(2) Describe the following varieties:
(a) $\mathbb{V}\left(X^{2}-Y, X^{3}-Z\right) \subseteq \mathbb{C}^{3}$
(b) $\mathbb{V}\left(X^{2}-Y Z, X Z-\bar{X}\right) \subseteq \mathbb{C}^{3}$
(c) $\mathbb{V}\left(X Z-Y^{2}, Z^{3}-X^{5}\right) \subseteq \mathbb{C}^{3}$
(3) We say that $\mathbf{x}=(x, y) \in \mathbb{C}^{2}$ is an interior point of a subset $A \subseteq \mathbb{C}^{2}$ if there exists some ball $B(\mathbf{x}, r)$ centred on \mathbf{x} of radius $r>0$ such that

$$
B(\mathbf{x}, r) \subset A .
$$

Show that a non-trivial variety

$$
V \subset \mathbb{C}^{2}
$$

cannot have interior points.
(4) Show that the set

$$
V=\left\{(x, y) \in \mathbb{C}^{2} \mid y=\mathrm{e}^{x}\right\}
$$

is not a variety.

Solutions

(1) (a) We have that

$$
\left(t^{2}\right)^{3}=t^{6}=\left(t^{3}\right)^{2}
$$

So writing $X=t^{2}$ and $Y=t^{3}$, we can write this set as

$$
\mathbb{V}\left(Y^{2}-X^{3}\right) \subseteq \mathbb{C}^{2}
$$

(b) Similarly to part (a), if we write $X=t^{2}$ and $Y=t^{3}+1$, then $X^{3}=$ $(Y-1)^{2}=t^{6}$, and hence we can write the set as

$$
\mathbb{V}\left((Y-1)^{2}-X^{3}\right) \subseteq \mathbb{C}^{2} .
$$

(c) Note that for any $s \in \mathbb{C}$, we can find $t \in \mathbb{C}$ such that $t^{2}=s$, and hence this set can be rewritten as

$$
\{(s, s) \mid s \in \mathbb{C}\}=\mathbb{V}(Y-X) \subseteq \mathbb{C}^{2}
$$

(d) We have

$$
\begin{gathered}
\{(t, t) \mid t \in \mathbb{C}\}=\mathbb{V}(Y-X) \\
\{(t,-t) \mid t \in \mathbb{C}\}=\mathbb{V}(Y+X)
\end{gathered}
$$

Then using the fact that $\mathbb{V}(F) \cup \mathbb{V}(G)=\mathbb{V}(F \cdot G)$, we have that

$$
\{(t, t) \mid t \in \mathbb{C}\} \cup\{(t,-t) \mid t \in \mathbb{C}\}=\mathbb{V}\left(Y^{2}-X^{2}\right)
$$

(e) This one is a little more difficult to describe as a zero set. One method of doing so would be to write $X=t^{3}+1$ and $Y=t^{2}+t$, and then take various products and multiples:

$$
\begin{aligned}
& 1=1 \\
& Y=t+t^{2} \\
& Y^{2}=\quad t^{2}+2 t^{3}+t^{4} \\
& Y^{3}=\quad t^{3}+3 t^{4}+3 t^{5}+t^{6} \\
& X=1+t^{3} \\
& \begin{array}{l}
X^{2}=1 \\
X Y=t+2 t^{3}=t^{2}+t^{4}+t^{6}
\end{array}
\end{aligned}
$$

We can rewrite this as a matrix equation:

$$
\left[\begin{array}{c}
1 \\
Y \\
Y^{2} \\
Y^{3} \\
X \\
X^{2} \\
X Y
\end{array}\right]=\left[\begin{array}{lllllll}
1 & & & & & & \\
& 1 & 1 & & & & \\
& & 1 & 2 & 1 & & \\
& & & 1 & 3 & 3 & 1 \\
1 & & & 1 & & & \\
1 & & & 2 & & & 1 \\
& 1 & 1 & & 1 & 1 &
\end{array}\right]\left[\begin{array}{c}
1 \\
t \\
t^{2} \\
t^{3} \\
t^{4} \\
t^{5} \\
t^{6}
\end{array}\right]
$$

Then we can do row reduction to get a row of zeros and hence a solution: for this, we have

$$
Y^{3}-X^{2}-3 X Y+X+3 Y=0
$$

and hence the set is $\mathbb{V}\left(Y^{3}-X^{2}-3 X Y+X+3 Y\right) \subseteq \mathbb{C}^{2}$.
(2) (a) Note that from the first polynomial we have $Y=X^{2}$ and from the second we have $Z=X^{3}$. So if we use a parameter $t \in \mathbb{C}$, we can write

$$
\mathbb{V}\left(X^{2}-Y, X^{3}-Z\right)=\left\{\left(t, t^{2}, t^{3}\right) \mid t \in \mathbb{C}\right\}
$$

(b) From the second polynomial, we have $X(Z-1)=0$. So we must have $X=0$ or $Z=1$ (or both).
If $X=0$, then the first polynomial gives $Y Z=0$, which is satisfied when $Y=0$ or $Z=0$: so the lines $X=Y=0$ and $X=Z=0$ are part of the variety.
If $Z=1$, then the first polynomial gives $Y=X^{2}$, and hence the parabola $Z=1, Y=X^{2}$ is another part of the variety.

(c) First use both polynomials to note that the only points in this variety with $X=0$ or $Y=0$ are the origin $(0,0,0)$. So assume that $X \neq$ $0, Y \neq 0$.
We can then look at the equality from the first polynomial:

$$
X Z-Y^{2}=0 \Leftrightarrow \frac{Y}{X}=\frac{Z}{Y}=: t
$$

(We can divide by X and Y since we assumed they're non-zero.) So we have

$$
Y=t X, Z=t Y=t^{2} X
$$

and hence

$$
\mathbb{V}\left(X Z-Y^{2}\right)=\left\{\left(x, t x, t^{2} x\right) \mid x, t \in \mathbb{C}\right\}
$$

To calculate the first variety, we substitute these points into the second polynomial (as we want the intersection:

$$
t^{6} x^{3}-x^{5}=0
$$

We can cancel a factor of x^{2} (again, since $x \neq 0$), and get

$$
x^{2}=t^{6} .
$$

Then this is only true if $x=t^{3}$ or $x=-t^{3}$. So our variety V has two pieces:

$$
V=\left\{\left(t^{3}, t^{4}, t^{5}\right) \mid t \in \mathbb{C}\right\} \cup\left\{\left(-t^{3},-t^{4},-t^{5}\right) \mid t \in \mathbb{C}\right\} .
$$

(3) First note that it suffices to show this for a variety of the form $\mathbb{V}(F)$, since the intersection of two sets without interior points can't gain interior points.

Suppose $P=(x, y)$ is an interior point of

$$
V=\mathbb{V}(F(X, Y)) \subseteq \mathbb{C}^{2}
$$

Fix $X=x \in \mathbb{C}$. Then we have a polynomial $F_{x}(Y)=F(x, Y) \in$ $\mathbb{C}[Y]$. Since (x, y) is an interior point, we have that $F_{x}(Y)=0$ on the set $(y-r, y+r)$: but we know that a non-zero polynomial in one variable can only have finitely many zeros. So $F_{x}(Y)$ is identically zero.

Similarly, the polynomial $F_{y}(X) \in \mathbb{C}[X]$ is identically zero, and hence $F(X, Y)$ is identically zero. So $\mathbb{V}(F)=\mathbb{C}^{2}$, giving us a contradiction (we assumed V was non-trivial).
(4) Suppose that V were a variety. Then the set

$$
W=V \cap \mathbb{V}(Y-1)
$$

would also be a variety (since we know that the intersection of two varieties is a variety).

We have

$$
W=\left\{(x, 1) \mid \mathrm{e}^{x}=1\right\}=\{(2 \pi k i, 1) \mid k \in \mathbb{Z}\}
$$

Then we just need to show the following: a variety $V \subseteq \mathbb{C}^{2}$ can only have finitely many isolated points (i.e. points \mathbf{x} of V with the property that there exists a ball $B(\mathbf{x}, r)$ around \mathbf{x} such that $B(\mathbf{x}, r) \cap V=\{\mathbf{x}\})$. Note that all points of W are isolated, and that it does have infinitely many points: so if we can prove this result, then neither W nor V can be varieties.

First, we note that $\mathbb{V}(F) \subseteq \mathbb{C}^{2}$ cannot have any isolated points. Then we reason that by Bézout's theorem (mentioned in Lecture 1), the intersection $\mathbb{V}(F, G)$ of two zero sets must have finitely many isolated points. Adding in further polynomials only brings down the number of intersection points: so infinitely many will be impossible.

