## PROBLEMS CLASS — WEEK 1

## QUESTIONS

- (1) Show that the given sets are varieties, and write them in the standard notation  $\mathbb{V}(\{F_i\}_{i\in I}) \subset \mathbb{C}^n$ . (a)  $\{(t^2, t^3) \mid t \in \mathbb{C}\}$ 

  - (b)  $\{(t^2, t^3 + 1) \mid t \in \mathbb{C}\}$
  - (c)  $\{(t^2, t^2) \mid t \in \mathbb{C}\}$
  - (d)  $\{(t,t) \mid t \in \mathbb{C}\} \cup \{(t,-t) \mid t \in \mathbb{C}\}$ (e)  $\{(t^3+1,t^2+t) \mid t \in \mathbb{C}\}$
- (2) Describe the following varieties:

  - (a)  $\mathbb{V}(X^2 Y, X^3 Z) \subseteq \mathbb{C}^3$ (b)  $\mathbb{V}(X^2 YZ, XZ X) \subseteq \mathbb{C}^3$ (c)  $\mathbb{V}(XZ Y^2, Z^3 X^5) \subseteq \mathbb{C}^3$
- (3) We say that  $\mathbf{x} = (x, y) \in \mathbb{C}^2$  is an *interior point* of a subset  $A \subseteq \mathbb{C}^2$  if there exists some ball  $B(\mathbf{x}, r)$  centred on  $\mathbf{x}$  of radius r > 0 such that

$$B(\mathbf{x},r) \subset A.$$

Show that a non-trivial variety

 $V\subset \mathbb{C}^2$ 

cannot have interior points.

(4) Show that the set

$$V = \{ (x, y) \in \mathbb{C}^2 \mid y = \mathrm{e}^x \}$$

is not a variety.

Solutions

(1) (a) We have that

$$(t^2)^3 = t^6 = (t^3)^2$$

So writing  $X = t^2$  and  $Y = t^3$ , we can write this set as

$$\mathbb{V}(Y^2 - X^3) \subseteq \mathbb{C}^2.$$

(b) Similarly to part (a), if we write  $X = t^2$  and  $Y = t^3 + 1$ , then  $X^3 =$  $(Y-1)^2 = t^6$ , and hence we can write the set as

$$\mathbb{V}((Y-1)^2 - X^3) \subseteq \mathbb{C}^2.$$

(c) Note that for any  $s \in \mathbb{C}$ , we can find  $t \in \mathbb{C}$  such that  $t^2 = s$ , and hence this set can be rewritten as

$$\{(s,s) \mid s \in \mathbb{C}\} = \mathbb{V}(Y - X) \subseteq \mathbb{C}^2.$$

(d) We have

$$\{(t,t) \mid t \in \mathbb{C}\} = \mathbb{V}(Y - X),$$

$$\{(t, -t) \mid t \in \mathbb{C}\} = \mathbb{V}(Y + X).$$

Then using the fact that  $\mathbb{V}(F) \cup \mathbb{V}(G) = \mathbb{V}(F \cdot G)$ , we have that

$$\{(t,t) \mid t \in \mathbb{C}\} \cup \{(t,-t) \mid t \in \mathbb{C}\} = \mathbb{V}(Y^2 - X^2).$$

(e) This one is a little more difficult to describe as a zero set. One method of doing so would be to write  $X = t^3 + 1$  and  $Y = t^2 + t$ , and then take various products and multiples:

| 1     | = | 1 |   |   |       |   |        |   |        |   |        |   |       |
|-------|---|---|---|---|-------|---|--------|---|--------|---|--------|---|-------|
| Y     | = |   | t | + | $t^2$ |   |        |   |        |   |        |   |       |
| $Y^2$ | = |   |   |   | $t^2$ | + | $2t^3$ | + | $t^4$  |   |        |   |       |
| $Y^3$ | = |   |   |   |       |   | $t^3$  | + | $3t^4$ | + | $3t^5$ | + | $t^6$ |
| X     | = | 1 |   |   |       | + | $t^3$  |   |        |   |        |   |       |
| $X^2$ | = | 1 |   |   |       | + | $2t^3$ |   |        |   |        | + | $t^6$ |
| XY    | = |   | t | + | $t^2$ |   |        | + | $t^4$  | + | $t^5$  |   |       |

We can rewrite this as a matrix equation:

| 1     |   | 1 |   |   |   |   |   | - | [ 1 ] |
|-------|---|---|---|---|---|---|---|---|-------|
| Y     |   |   | 1 | 1 |   |   |   |   | t     |
| $Y^2$ |   |   |   | 1 | 2 | 1 |   |   | $t^2$ |
| $Y^3$ | = |   |   |   | 1 | 3 | 3 | 1 | $t^3$ |
| X     |   | 1 |   |   | 1 |   |   |   | $t^4$ |
| $X^2$ |   | 1 |   |   | 2 |   |   | 1 | $t^5$ |
| XY    |   |   | 1 | 1 |   | 1 | 1 |   | $t^6$ |

Then we can do row reduction to get a row of zeros and hence a solution: for this, we have

$$Y^3 - X^2 - 3XY + X + 3Y = 0,$$

and hence the set is  $\mathbb{V}(Y^3 - X^2 - 3XY + X + 3Y) \subseteq \mathbb{C}^2$ .

(2) (a) Note that from the first polynomial we have  $Y = X^2$  and from the second we have  $Z = X^3$ . So if we use a parameter  $t \in \mathbb{C}$ , we can write

$$\mathbb{V}(X^2 - Y, X^3 - Z) = \{(t, t^2, t^3) \mid t \in \mathbb{C}\}.$$

(b) From the second polynomial, we have X(Z-1) = 0. So we must have X = 0 or Z = 1 (or both).

If X = 0, then the first polynomial gives YZ = 0, which is satisfied when Y = 0 or Z = 0: so the lines X = Y = 0 and X = Z = 0 are part of the variety.

If Z = 1, then the first polynomial gives  $Y = X^2$ , and hence the parabola  $Z = 1, Y = X^2$  is another part of the variety.

 $\mathbf{2}$ 



(c) First use both polynomials to note that the only points in this variety with X = 0 or Y = 0 are the origin (0, 0, 0). So assume that  $X \neq 0, Y \neq 0$ .

We can then look at the equality from the first polynomial:

$$XZ - Y^2 = 0 \iff \frac{Y}{X} = \frac{Z}{Y} =: t.$$

(We can divide by X and Y since we assumed they're non-zero.) So we have

$$Y = tX, \ Z = tY = t^2X,$$

and hence

$$\mathbb{V}(XZ - Y^2) = \{(x, tx, t^2x) \mid x, t \in \mathbb{C}\}.$$

To calculate the first variety, we substitute these points into the second polynomial (as we want the intersection:

$$t^6 x^3 - x^5 = 0.$$

We can cancel a factor of  $x^2$  (again, since  $x \neq 0$ ), and get

$$x^2 = t^6$$
.

Then this is only true if  $x = t^3$  or  $x = -t^3$ . So our variety V has two pieces:

$$V = \{(t^3, t^4, t^5) \mid t \in \mathbb{C}\} \cup \{(-t^3, -t^4, -t^5) \mid t \in \mathbb{C}\}.$$

(3) First note that it suffices to show this for a variety of the form  $\mathbb{V}(F)$ , since the intersection of two sets without interior points can't gain interior points.

Suppose P = (x, y) is an interior point of

$$V = \mathbb{V}(F(X,Y)) \subseteq \mathbb{C}^2$$

Fix  $X = x \in \mathbb{C}$ . Then we have a polynomial  $F_x(Y) = F(x, Y) \in \mathbb{C}[Y]$ . Since (x, y) is an interior point, we have that  $F_x(Y) = 0$  on the set (y - r, y + r): but we know that a non-zero polynomial in one variable can only have finitely many zeros. So  $F_x(Y)$  is identically zero.

Similarly, the polynomial  $F_y(X) \in \mathbb{C}[X]$  is identically zero, and hence F(X, Y) is identically zero. So  $\mathbb{V}(F) = \mathbb{C}^2$ , giving us a contradiction (we assumed V was non-trivial).

(4) Suppose that V were a variety. Then the set

$$W = V \cap \mathbb{V}(Y - 1)$$

would also be a variety (since we know that the intersection of two varieties is a variety).

We have

$$W = \{ (x,1) \mid e^x = 1 \} = \{ (2\pi ki, 1) \mid k \in \mathbb{Z} \}.$$

Then we just need to show the following: a variety  $V \subseteq \mathbb{C}^2$  can only have finitely many isolated points (i.e. points **x** of V with the property that there exists a ball  $B(\mathbf{x}, r)$  around **x** such that  $B(\mathbf{x}, r) \cap V = {\mathbf{x}}$ ). Note that all points of W are isolated, and that it does have infinitely many points: so if we can prove this result, then neither W nor V can be varieties.

First, we note that  $\mathbb{V}(F) \subseteq \mathbb{C}^2$  cannot have *any* isolated points. Then we reason that by Bézout's theorem (mentioned in Lecture 1), the intersection  $\mathbb{V}(F,G)$  of two zero sets must have finitely many isolated points. Adding in further polynomials only brings down the number of intersection points: so infinitely many will be impossible.